Introduction to Computer Vision
CS 280

Professors: Jitendra Malik & Angjoo Kanazawa
GSls: Jathushan Rajasegaran, Rahul Ravishankar, Ryan Tabrizi



Course Website: https://cs280-berkeley.github.io/




~ Phylogen
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The evolutionary progression

* Vision and Locomotion
* Manipulation
* Language



Moravec s argument(1998)

* 1 neuron = 1000 instructions/sec
* 1 synapse =1 byte of information

* Human brain then processes 10714 |IPS and
nas 10714 bytes of storage

* |[n 2000, we have 1079 IPS and 1079 bytes on
a desktop machine

e Assuming Moore’ s law we obtain human level
computing power in 2025.




Computer power available to Al and Robot programs
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Evolution of Computer Power/Cost

MIPS per $1000 (1997 Dollars)
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Moravec was right!

* Human brain processes 10714 IPS and has
10714 bytes of storage

 The NVIDIA H100 GPU has a computing power of
approximately 67 TeraFLOPs (TFLOPs) in FP32
precision, meaning it can perform 67 trillion
floating-point operations per second; in TF32
Tensor Core, it can reach up to 989 TeraFLOPs.



Some early history...



McCulloch & Pitts (1943)

A logical calculus of the ideas immanent in nervous activity
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D. Hebb and Synaptic Learning
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Neuron's synapse is not

efficient enough to trigger
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Turing’s suggestion

Perception and Interaction Language
456 A. M. TURING :

Instead of trying to produce a programme to simulate the
adult mind, why not rather try to produce one which simulates
the child’s ? TIf this were then subjected to an appropriate ]
course of education one would obtain the adult brain. Pre- TUring (1950)
sumably the child-brain is something like a note-book as one . .
buys ityfrom the stationers. Rather glit;t;le mechanism, and lots Computlng MaChmery
of blank sheets. (Mechanism and writing are from our point of  And Intelli gence
view almost synonymous.) Our hope is that there is so little
mechanism in the child-brain that something like it can be easily
programmed. The amount of work in the education we can
assume, as a first approximation, to be much the same as for the

human child. .



Paradigms for mechanizing intelligence

~1960
e Classic Al (McCarthy, Minsky, Newell, Simon)

— Games, theorem-proving, reasoning
— Search, represent and reason in first-order logic
* Pattern Recognition (Rosenblatt, Widrow)
— Classification, Associative memory
— Learning (Perceptrons ...
e Estimation and Control (Bellman, Kalman)

— Decide action in uncertain, time-varying environment
— Markov Decision Processes, adaptive control ...



» Visual Areas of the Human Cerebral Cortex
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Hubel and Wiesel (1962) discovered orientation sensitive
neurons in V1
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Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima

NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan
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Convolutional Neural Networks (LeCun et al )
Used backpropagation to train the weights in this architecture

First demonstrated by LeCun et al for handwritten digit recognition(1989)

Applied in sliding window paradigm for tasks such as face detection in the
1990s.

However was not competitive on standard computer vision object
detection benchmarks in the 2000s.

Thanks to availability of faster computing (GPUs) and large amounts of
labeled data (Imagenet) we have seen an amazing renaissance led by
Krizhevsky, Sutskever & Hinton (2012)
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The 3R’s of Vision:
Recognition, Reconstruction & Reorganization
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TaIk at POCV Workshop, CVPR 2012
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Gemini-2.0

Build Al agents
with Gemini 2.0

Native audio output
Native image output
Native tool use
Spatial understanding

Video understanding

Multimodal live streaming
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What we can infer...
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What we would like to infer...

*k.

Will person B put some money into Person C’s tip bag?



Al systems need to build “mental models”

If the organism carries a 'small-scale model’ of
external reality and of its own possible actions
Th within its head, it is able to try out various

e alternatives, conclude which is the best of them,
Nature of react to future situations before they arise, utilize
EXp'GﬂGtiOﬂ the knowledge of past events in dealing with the

present and the future, and in every way to react

KENNETH in a much fuller, safer, and more competent
CRAIK manner to the emergencies which face it (Craik,
1943,Ch. 5, p.61)

Commonsense is not just facts, itis a collection of models



Where should we go next?

* Turing’s Baby



Ontogeny of Intelligence

Perception and Interaction
456 A. M. TURING :

Instead of trying to produce a programme to simulate the
adult mind, why not rather try to produce one which simulates
the child’s ? TIf this were then subjected to an appropriate
course of education one would obtain the adult brain. Pre-
sumably the child-brain is something like a note-book as one
buys it from the stationers. Rather little mechanism, and lots
of blank sheets. (Mechanism and writing are from our point of
view almost synonymous.) Our hope is that there is so little
mechanism in the child-brain that something like it can be easily
programmed. The amount of work in the education we can
assume, as a first approximation, to be much the same as for the

human child.

Language

Turing (1950)
Computing Machinery

And Intelligence
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The Development of Embodied Cognition:

Six Lessons from Babies
Linda Smith & Michael Gasser

Abstract. The embodiment hypothesis is the idea that intelligence emerges in the
interaction of an agent with an environment and as a result of sensorimotor activity. In
this paper we offer six lessons for developing embodied intelligent agents suggested by
research in developmental psychology. We argue that starting as a baby grounded in a
physical, social and linguistic world is crucial to the development of the flexible and

inventive intelligence that characterizes humankind.



The Six Lessons

* Be multi-modal
* Be incremental
* Be physical

* Explore

* Be social

* Use language

* | think this provides the right structure for viewing the
stages of inbuilt, supervised by observation, supervised
by interaction, supervised by culture



We can only see a short distance ahead, but
we can see plenty there that needs to be done.
-Alan Turing



Fundamentals of Image
Formation



A camera creates an image ...

WOR L O

The image I(x,y) measures how much light is captured at pixel (x,y)

We want to know
 Where does a point (X,Y,Z) in the world get imaged?
 What is the brightness at the resulting point (x,y)?



The Pinhole Camera
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Camera Obscura
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The Pinhole Camera
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Let us prove this ...

This diagram is for the special case of a point P in the Y-Z plane: ~
In the general case, consider the projection of P on the Y-Z plane. (
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The Pinhole Camera
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The image is inverted
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From Descartes(1637), La Dioptrique

This was pointed out by Kepler in 1604

But this is no big deal. The brain
can interpret it the right way. And
for a camera, software can simply
flip the image top-down and
right-left. After this trick, we get

fX Y
YT YTy



A projection model that avoids
Inversion
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Perspective projection is a mapping from
points in 3D space to rays through the Center
of Projection



Some perspective phenomena...
-—-rl-—-—uq

//\%F

/




Parallel lines converge to a vanishing
point




Each family of parallel lines has its own vanishing point
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Each family of parallel lines has its own vanishing point

Vanishing S Vanishing
Point f 2 e Point
jge——— — | El <.t

Horizon = I ~= o Horizon

But this isn’t true of the vertical lines. They stay parallel. Why?



Vanishing point in vector notation

X
P—f7

A line of points in 3D can be represented as X = A + AD, where A is a fixed
point, D a unit vector parallel to the line, and A a measure of distance along
the line. As A increases points are increasingly further away and in the limit:

lim —fA+/\D _D
st 1A, 0D, ' Dy,

i.e. the image of the line terminates in a wvanishing point with coordinates
(fDx/Dg, fDy/Dz), unless the line is parallel to the image plane (Dz = 0).
Note, the vanishing point is unaffected (invariant to) line position, A, it only
depends on line orientation, D. Consequently, the family of lines parallel to
D have the same vanishing point.



Nearer objects are lower in the image
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Proof

The equation of the ground planeisY =-h

A point on the ground plane will have y-coordinate y= -fh/Z
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Nearer objects look bigger




Nearer objects look bigger

Topat (X, L—h, Z)

Bottom at (X, - h, Z) |

It is straightforward to calculate the projection of the top &
bottom of the pole. The difference is the “apparent height”



The natural measure of image size is

visual angle
\
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Perspective projection is a mapping from
points in 3D space to rays through the Center
of Projection
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Two main effects of perspective projection

1. Distance — farther objects project to smaller sizes on

the image plane. The scaling factor is 1/Z
2. Foreshortening — objects that are slanted with respect

to the line of sight project to smaller sizes on the image
plane. The scaling factor is cos o
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The slabs that are far away not only look

smaller, but also more foreshortened
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Orthographic projection

Approximation to perspective when the object is relatively far away
compared to the depth variation in it

4 10N )\{l 72')
(X‘L/\(l’ Zl)

The idea is as follows: If the depth Z of points on the object varies within
some range Zo+AZ, with AZ < Z,, then the perspective scaling factor f/Z
can be approximated by a constant s = f/Z,. The equations for projection
from the scene coordinates (X, Y, Z) to the image plane become z = sX and
y = sY . Note that scaled orthographic projection is an approximation that is
valid only for those parts of the scene with not much internal depth variation;
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Drawing by S. Harris; © 1975 The New Yorker Magazine, Inc.)
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