ViT and Self-Supervised Models

CS280

Spring 2025

Angjoo Kanazawa

Attention is expensive

For Memory and Computation.

Prevents long context!

Flash Attention

- Does not instantiate the entire N x N attention matrix A , i.e. QK^T
- Dedicated GPU kernel for efficient implementation
- Running sum for softmax...
- Memory reduced from O(N²) to O(Nd)
- Need operation to be on Q and K independently

Positional Encoding

I bought an apple watch

watch an apple I bought

I bought an apple watch

watch an apple I bought

Positional Encoding

Changing N

Goal: Unique positional encoding for each of your tokens.

N is the wavelength of the low-frequency band, larger it is, larger number you can represent.

Transformer Positional Encoding

What is used N=10,000

Back to pixels!

How to apply transformers to pixels?

- Naïve tokenization of a pixel for 224x224 image:
 - Over 500k tokens!
- Too much!
- Solution?

Vision Transformer

An image is worth 16x16 words, Dosovitskiy e tal. ICLR 2021

Positional Encoding

- Originally, they just flattened the patches from 1-256, treated it as a 1D signal!
- Or learned positional embedding
- Problem?
- Both solutions assume fixed size!
- You can't change your image size!
- Need to retrain..

Relative POsitional Encoding: ROPE

Re-write the original posenc

• Focus on one frequency, $\theta = w_d$

Multiplying by $e^{i\theta}$ is same as applying a 2D rotation matrix

 $E(p) = \begin{bmatrix} \sin(w_0p) \\ \cos(w_0p) \\ \sin(w_1p) \\ \cos(w_1p) \\ \frac{1}{\cos(w_1^2 - 1^p)} \\ \cos(w_{\frac{d}{2} - 1}p) \end{bmatrix} \end{bmatrix}$ • Then this is a coordinate on an unit circle! • This is a coordinate on an unit circle! • You can write this fourier basis in its exponential form (Euler's formula) $e^{i\theta p} = \cos(\theta p) + i\sin(\theta p).$ • The this is a coordinate on an unit circle! • You can write this fourier basis in its exponential form (Euler's formula) • This is a coordinate on an unit circle! • You can write this fourier basis in its exponential form (Euler's formula) • The this is a coordinate on an unit circle! • You can write this fourier basis in its exponential form (Euler's formula) • The this is a coordinate on an unit circle! • You can write this fourier basis in its exponential form (Euler's formula) • The this is a coordinate on an unit circle! • You can write this fourier basis in its exponential form (Euler's formula) • $e^{i\theta p} = \cos(\theta p) + i\sin(\theta p).$

 $\langle \mathrm{PE}(p_1),\mathrm{PE}(p_2)
angle = e^{-i heta p_1}\,e^{i heta p_2} = e^{i heta(p_2-p_1)}$

Re-write the original posenc

- Focus on one frequency, $heta=w_d$
- Then this is a 2D vector

 $\operatorname{PE}(p) = [\sin(\theta p), \cos(\theta p)].$

 $e^{i heta p} = \cos(heta p) + i\sin(heta p).$

- This is a coordinate on an unit circle!
- You can write this fourier basis in its exponential form Multiplying by $e^{i\theta}$ is (Euler's formula) same as applying a 2D

rotation matrix

• Has a nice property (holds across frequencies)!:

 $\langle \mathrm{PE}(p_1), \mathrm{PE}(p_2)
angle = e^{-i heta p_1} \, e^{i heta p_2} = e^{i heta (p_2 - p_1)}$

ROPE — rotate tokens for relative positional encoding

 $\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d}}
ight)V.$

$$QK^T = (W_q X)(X^T W_k^T).$$

$$Q = W_q X, \quad K = W_k X.$$

Absolute PosEnc:

$$X = X' + PE(m)$$

 $Q=W_q(Xe^{im}), \quad K=W_k(Xe^{in}).$

$$QK^T = W_q X e^{i(m-n)} X^T W_k^T.$$

Pre-multiply the tokens with rotations Flash Attention friendly!! Unfortunately only works in 1D SO(2) bc of commutativitiy

Aurich and Weule 1995 Tomasi and Manduchi 1998...

Bilateral Filter

bilateral filter weights of the central pixel

Figure from paris et al.

Rotary Positional Embeddings, 2021

$$R_{\Theta}^{m} W_{q} x_{m}$$

 $R_{\Theta}^{n} W_{k} x_{n}$ key vector for the token at position n

$$R_{\Theta}^{m} = \begin{bmatrix} \cos(m\theta) & -\sin(m\theta) \\ \sin(m\theta) & \cos(m\theta) \end{bmatrix}$$

$$R_{\Theta}^{m} W_{q} x_{m}$$

 $R_{\Theta}^{n} W_{k} x_{n}$ key vector for the token at position n

$$\alpha_{m,n} = \boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{W}_k^{\mathsf{T}} (\boldsymbol{R}_{\Theta}^n)^{\mathsf{T}} \boldsymbol{R}_{\Theta}^m \boldsymbol{W}_q \boldsymbol{x}_m$$

$$R_{\Theta}^{m} = \begin{bmatrix} \cos(m\theta) & -\sin(m\theta) \\ \sin(m\theta) & \cos(m\theta) \end{bmatrix}$$

$$R_{\Theta}^{m} W_{q} x_{m}$$

 $R_{\Theta}^{n} W_{k} x_{n}$ key vector for the token at position n

$$\alpha_{m,n} = \boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{W}_k^{\mathsf{T}} (\boldsymbol{R}_{\Theta}^n)^{\mathsf{T}} \boldsymbol{R}_{\Theta}^m \boldsymbol{W}_q \boldsymbol{x}_m$$

$$R_{\Theta}^{m} = \begin{bmatrix} \cos(m\theta) & -\sin(m\theta) \\ \sin(m\theta) & \cos(m\theta) \end{bmatrix}$$

$$R_{\Theta}^{m} W_{q} x_{m}$$

 $R_{\Theta}^{n} W_{k} x_{n}$ key vector for the token at position n

$$\alpha_{m,n} = \boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{W}_k^{\mathsf{T}} (\boldsymbol{R}_{\Theta}^n)^{\mathsf{T}} \boldsymbol{R}_{\Theta}^m \boldsymbol{W}_q \boldsymbol{x}_m$$

$$R_{\Theta}^{m} = \begin{bmatrix} \cos(m\theta) & -\sin(m\theta) \\ \sin(m\theta) & \cos(m\theta) \end{bmatrix}$$

$$R_{\Theta}^{m} W_{q} x_{m}$$

 $R_{\Theta}^{n} W_{k} x_{n}$ key vector for the token at position n

$$\alpha_{m,n} = \boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{W}_k^{\mathsf{T}} \boldsymbol{R}_{\Theta}^{-n} \boldsymbol{R}_{\Theta}^{m} \boldsymbol{W}_q \boldsymbol{x}_m$$

$$R_{\Theta}^{m} = \begin{bmatrix} \cos(m\theta) & -\sin(m\theta) \\ \sin(m\theta) & \cos(m\theta) \end{bmatrix}$$

$$R_{\Theta}^{m} W_{q} x_{m}$$

 $R_{\Theta}^{n} W_{k} x_{n}$ key vector for the token at position *n*

$$\alpha_{m,n} = \boldsymbol{x}_n^{\mathsf{T}} \boldsymbol{W}_k^{\mathsf{T}} \quad \boldsymbol{R}_{\boldsymbol{\Theta}}^{m-n} \boldsymbol{W}_q \boldsymbol{x}_m$$

$$R_{\Theta}^{m} = \begin{bmatrix} \cos(m\theta) & -\sin(m\theta) \\ \sin(m\theta) & \cos(m\theta) \end{bmatrix}$$

$$R_{\Theta}^{m} = \begin{bmatrix} \cos(m\theta) & -\sin(m\theta) \\ \sin(m\theta) & \cos(m\theta) \end{bmatrix}$$

$$W_q x_m$$

$$R_{\Theta}^{m} = \begin{bmatrix} \cos(m\theta) & -\sin(m\theta) \\ \sin(m\theta) & \cos(m\theta) \end{bmatrix}$$

 $W_q x_m$

 $f_a(\boldsymbol{x}_m, m)$

 $W_q x_m$

 $f_a(\boldsymbol{x}_m, m)$

 $W_q x_m$

$$W_q x_m$$

 $f_q(\boldsymbol{x}_m, m)$

 $W_q x_m$

2D ROPE

Switching Gears

Using ViT!

Vision Transformer

An image is worth 16x16 words, Dosovitskiy e tal. ICLR 2021

Is semantic supervision necessary to learn good representations?

- Manual labeling doesn't scale, suffers from biases
- Plenty of unlabeled visual data already, and growing really fast
- And subject of the Gelato Bet:
- Made on Sept 23 2014
- If, by the first day of autumn (Sept 23) of 2015, a method will exist that can match or beat the performance of R-CNN on Pascal VOC detection, without the use of any extra, human annotations (e.g. ImageNet) as pre-training, Mr. Malik promises to buy Mr. Efros one (1) gelato (2 scoops: one chocolate, one vanilla).

Self supervised learning with ViTs

Pre-train representations on a pre-text task

E.g. Colorization

After pre-training, use representation for down-stream tasks. Many other possibilities,

• Spatial relationship between pair of patches

- Predict sound / frame ordering in a video
- Encourage two augmentations of same image to be closer to each other than to another image
- Predict hidden image patches from context

<u>Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction</u>, Zhang et al. CVPR 2017 <u>Context as Supervisory Signal: Discovering Objects with Predictable Context</u>, Doersch et al. ICCV 2015

Contrastive Learning

- Encourage two augmentations of an image to be close.
- Using a contrastive loss:

$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

A Simple Framework for Contrastive Learning of Visual Representations, Chen et al. ICML 2020 See also: Momentum Contrast for Unsupervised Visual Representation Learning, He et al. CVPR 2020

Augmentations

A Simple Framework for Contrastive Learning of Visual Representations, Chen et al. ICML 2020

A Simple Framework for Contrastive Learning of Visual Representations, Chen et al. ICML 2020

Masked Auto-Encoders

- Mask out image patches, predict masked patches from visible patches.
- Pre-train encoder & decoder.
- Use encoder as an image representation.
- Used as frozen backbone for various vision tasks like detection/segmentation (later in class)

Better than semantic supervision on ImageNet 1K!

		AP ^{box}		AP ^{mask}	
method	pre-train data	ViT-B	ViT-L	ViT-B	ViT-L
supervised	IN1K w/ labels	47.9	49.3	42.9	43.9
MoCo v3	IN1K	47.9	49.3	42.7	44.0
BEiT	IN1K+DALLE	49.8	53.3	44.4	47.1
MAE	IN1K	50.3	53.3	44.9	47.2

Table 4. **COCO object detection and segmentation** using a ViT Mask R-CNN baseline. All entries are based on our implementation. Self-supervised entries use IN1K data *without* labels. Mask AP follows a similar trend as box AP.

Scaling behavior \rightarrow

method	pre-train data	ViT-B	ViT-L
supervised	IN1K w/ labels	47.4	49.9
MoCo v3	IN1K	47.3	49.1
BEiT	IN1K+DALLE	47.1	53.3
MAE	IN1K	48.1	53.6

Table 5. **ADE20K semantic segmentation** (mIoU) using Uper-Net. BEiT results are reproduced using the official code. Other entries are based on our implementation. Self-supervised entries use IN1K data *without* labels.

dataset	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈	prev best
iNat 2017	70.5	75.7	79.3	83.4	75.4 [55]
iNat 2018	75.4	80.1	83.0	86.8	81.2 [54]
iNat 2019	80.5	83.4	85.7	88.3	84.1 [54]
Places205	63.9	65.8	65.9	66.8	66.0 [19]†
Places365	57.9	59.4	59.8	60.3	58.0 [40] ‡

Table 6. **Transfer learning accuracy on classification datasets**, using MAE pre-trained on IN1K and then fine-tuned. We provide system-level comparisons with the previous best results.

[†]: pre-trained on 1 billion images. [‡]: pre-trained on 3.5 billion images.

Improves performance on ImageNet itself

Figure 8. MAE pre-training vs. supervised pre-training, evaluated by fine-tuning in ImageNet-1K (224 size). We compare with the original ViT results [16] trained in IN1K or JFT300M.

Better than past self-supervision approaches

method	pre-train data	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈
scratch, our impl.	-	82.3	82.6	83.1	-
DINO [5]	IN1K	82.8	-	-	-
MoCo v3 [9]	IN1K	83.2	84.1	-	-
BEiT [2]	IN1K+DALLE	83.2	85.2	-	-
MAE	IN1K	<u>83.6</u>	<u>85.9</u>	86.9	87.8

Ablations

Need high masking ratio for good learning. NLP models use 15-20% masking ratio.

case	ft	lin	FLOPs
encoder w/ [M]	84.2	59.6	3.3×
encoder w/o [M]	84.9	73.5	$1 \times$

Faster and better to not input masked out patches to encoder

case	ft	lin
pixel (w/o norm)	84.9	73.5
pixel (w/ norm)	85.4	73.9
PCA	84.6	72.3
dVAE token	85.3	71.6

Normalized pixels are a better target than discrete tokens / PCA coefficients

Take away

- Able to pre-train data-hungry ViT model
- Very well structured experiments! Read and learn from it.

DiNO - Approach

• Self supervised learning as a special case of knowledge distillation

DiNO - Training

65 Slides from Shai Bagon

DiNO - Explanation

- Augmentations
 - Tells the model what to ignore
 - Collor jitter, Gaussian Blur, Solarize
 - Acts as a data prior
- "Global local" cropping
- Teacher out-distribution sharpening via centering & Low-temperature in softmax
- The student encoder learns "abstract representations"
 - No awareness of "class labels" or meaning behind logits

70 Slides from Shai Bagon

• Self supervised learning also makes learned representations applicable to out-of-distribution data

Input image

Last block attention map

Usage

```
vit model = torch.hub.load('facebookresearch/dino:main',
                          f'dino vits16', pretrained=True)
img = imread('zebra.png')
x = vit model.prepare tokens(img)
for blk in vit model.blocks[:-1]:
    x = blk(x)
attn maps = vit model.blocks[-1](x, return attention=True)
# Choose head, Get attention map of class token
attn map = attn maps[0, HEAD, 0, 1:].reshape((1, 1, H PATCHES, W PATCHES))
attn map = F.interpolate(attn map, scale factor=16, mode="nearest")
```


73 Slides from Shai Bagon
Usage

```
img = imread('zebra.png')
```

```
attn_maps = vit_model.get_last_selfattention(img)
```

Choose head, Get attention map of class token
attn_map = attn_maps[0, HEAD, 0, 1:].reshape((1, 1, H_PATCHES, W_PATCHES))
attn_map = F.interpolate(attn_map, scale_factor=16, mode="nearest")

74 Slides from Shai Bagon

PCA (Keys) across layers

Self-supervised ViT (DINO-ViT)

deep

Supervised ViT

-Self-supervised_ResNet_(DINO-ResNet)-

Supervised ResNet

PCA – DiNO ViT

Amir, S., Gandelsman, Y., Bagon, S., Dekel, T., **"Deep ViT Features as dense visual descriptors"**

Input image

Slides from Shai Bagon

(b) Self-Supervised ViT (DINO-ViT) Slides from Shai Bagon

Tumanyan, N., Bar-Tal, O., Bagon, S., Dekel, T. Splicing vit features for semantic appearance transfer (CVPR 2022) Slides from Shai Bagon

Splicing vit features for semantic appearance transfer (CVPR 2022) Slides from Shai Bagon

Input

layer 3

layer 11

