Diffusion Models

Flow Matching Perspective

CS 280 2025
Angjoo Kanazawa, co-designed with Songwei Ge, David McAllister

Thanks to Yaron Limpan and co + Steve Seitz for great slides!

Logistics

- Homework to be released today
- Today is by me
- Wednesday guest lecture by Songwei Ge and David McAllister!

An astronaut riding a horse in a photorealistic style (Dall-E 2) slide from Steve Seitz's video

Impressive compositionality:

DALL-E + Danielle Baskin

Generative Models

Goal: Modeling the space of Natural Images

- Want to estimate P(x) the probability distribution of natural images
- Why? Many reasons

The generative story

 p_{source}

Generative Story

- Any Generative Model can be described with the process of sampling an image
- For ex, here's the generative story for PCA in its probabilistic interpretation:
 - 1. Sample from a Gaussian Distribution

$$z \sim N(0,I)$$

2. Project to Images (W = Eigenvectors, Mu = avg datapoint)

$$x = Wz + \mu$$

Generative Models

- Many methods:
 - Parametric Distribution Estimation (e.g. GMM, PCA)
 - Autoregressive models (e.g. PixelCNN, GPT)
 - Latent space mapping (e.g. VAE, GANs)
 - Flow based models (e.g. Diffusion, Normalized Flow, Flow Matching)

Flow based Generative Models

 p_{source}

Generative models

 \mathbb{R}^d

Generative models

Flows as Generative Models

Slides from Yaron Lipman [Chen et al. 2018]

History

DALL-E1 Open AI 2020

DALL-E2 Open AI 2023 StableDiffusion, Stability 2023

Sohl-Dickstein et al. 2015
Deep unsupervised learning using non
equilibrium thermodynamics

Song et al. Score-based Generative Models, DDIM

DDPM, Ho et al. 2020

2021

Rectified Flow, Liu et al. 2022

NICE Dinh et al. Normalizing Flows 2015 RealNVP, Dinh et al. 2017 Glow, Kingma & Dhaliwal 2018

Neural ODE Chen et al. 2018...

Flow Matching, Lipman et al. 2022

> Flow Matching Tutorial NeurIPS 2024

> > MovieGen late 2024~

History

Diffusion Arc

DALL-E1 Open AI 2020

DALL-E2 Open AI 2023 StableDiffusion, Stability 2023

Sohl-Dickstein et al. 2015

Deep insupervised learning using non equilibrium thermodynamics

NICE Dinh et al.

Normalizing Flows 2015

RealNVP, Dinh et al.

UIUW Kingma & Dhaliwal 2018

Neural ODE Chen et al. 2018...

Song et al. Score-based Generative Models, DDIM

DDPM, Ho et al. 2020

2021

Rectified Flow, Liu et al. 2022

Flow Matching, Lipman et al. 2022

Unification / Simplification

Flow Matching Tutorial NeurIPS 2024

> MovieGen late 2024~

Normalizing Flow Arc

Diffusion: Physics Interpretation

First, the intuition Inference

Flow based Generative model (neural network)

First, the intuition Training

Training

1. Take real data, corrupt it to left the distribution somehow

Training

1. Take real data, corrupt it to left distribution somehow

Learn to undo the process!

Denoising with a neural network

suitable image-to-image network

Slide source: Steve Seitz

Training

slide from Steve Seitz's video

Training
slide from Steve Seitz's video

slide from Steve Seitz's video

Training
slide from Steve Seitz's video

slide from Steve Seitz's <u>video</u>

\$\$\$ question, how to pick the intermediate path?

How to generate this Green path?

What is the path?

- How to add noise? What kind of noise?? What schedule to add them???
- Lots of math here in the diffusion literature! Can we keep it simple?

Flow Matching [Lipman et al. 2022]!

Flow matching basically says, you can add noise however you like!

Training

TLDR: Sample noise, add it, then reconstruct the data

Flow matching says you can **pick any combination**, as long as it starts from a sample in the source distribution and ends with a sample in the target distribution (image)

$$x_t = \alpha_t x_0 + \sigma_t x_1$$

$$x_0 \sim p_0(x) \qquad x_1 \sim p_1(x)$$

A Very Simple Way

Linear interpolation!

$$x_t = \alpha_t x_0 + \sigma_t x_1$$

$$x_t = (1 - t)x_0 + tx_1$$

What is the supervision?

$$x_{t} = \alpha_{t}x_{0} + \sigma_{t}x_{1}$$

$$x_{t} = (1 - t)x_{0} + tx_{1}$$

$$\frac{dx_{t}}{dt} = -x_{0} + x_{1}$$

$$= x_{1} - x_{0}$$

$$\mathbb{E}_{t,X_0,X_1} \| u_t^{\theta}(X_t) - (X_1 - X_0) \|^2$$

^{*}Conditioned on a single sample

Test-time sampling

- Just take a small step in the velocity
- Use any ODE Solver, i.e. integration you like, like Euler integration:

$$x_{t+\Delta t} = x_t + \Delta t \cdot \left. rac{dx}{dt}
ight|_{x_t,t}$$

Sample from $X_0 \sim p$

Model Parametrization

- Simplest Just make your NN predict the velocity, which with the simple linear interpolation is always just x1 x0
- Other options: Make it output the noise added or the clean image.
 Possible with some arithmetics
- But will have some 1/t or 1/(1-t) terms, which is annoying at the edges

Inside a Training Loop

Flow Matching

```
x = next(dataset)
t = torch.rand(1) \# Sample timestep (0,1)
noise = torch.randn like(x) # Sample noise
x_t = (1-t) * x + (t) * noise # Get noisy x t
flow pred = model(x t, t) # Predict noise in x t
flow gt = x - noise # ground truth flow (w/ linear sched)
loss = F.mse_loss(flow pred, flow gt) # Update model
loss.backward()
optimizer.step()
```

Inside Sampling Loop

```
velocity = model(x_t, t) # Predict noise in x_t
x_t = x_t + dt * velocity # Step in velocity
```

Other options lead to prior works

$$x_t = \alpha_t x_0 + \sigma_t x_1$$

- Other choices:
 - Preserve variance (VP-ODE) DDPM
 - Exploding variance (VE-ODE) Score Matching/DDIM
 - Linear interpolation (Flow Matching, Rectified Flow)

Why does Flow Matching work?

FM —> predict the velocity conditioned on a single sample

Flow as a generative model

$$X_t = \psi_t(X_0)$$
 , $t \in [0,1]$ Warping Source $X_0 \sim p$

. Markov:
$$X_{t+h} = \psi_{t+h|t}(X_t)$$

History

Diffusion Arc

DALL-E1 Open AI 2020

DALL-E2 Open AI 2023 StableDiffusion, Stability 2023

Sohl-Dickstein et al. 2015

Deep insupervised learning using non equilibrium thermodynamics

NICE Dinh et al.

Normalizing Flows 2015

RealNVP, Dinh et al.

UIUW Kingma & Dhaliwal 2018

Neural ODE Chen et al. 2018...

Song et al. Score-based Generative Models, DDIM

DDPM, Ho et al. 2020

2021

Rectified Flow, Liu et al. 2022

Flow Matching, Lipman et al. 2022

Unification / Simplification

Flow Matching Tutorial NeurIPS 2024

> MovieGen late 2024~

Normalizing Flow Arc

Initial approach trained flow with Maximum Likelihood

$$D_{\text{KL}}(q || p_1) = -\mathbb{E}_{x \sim q} \log p_1(x) + c$$

- Normalizing Flow, Continuous Normalizing Flow
- Requires ODE simulation DURING training with invertible neural networks

Instead, model Flow with Velocity

Solve ODE
$$u_t(x)$$

$$u_t(x)$$
Velocity

$$\frac{\mathrm{d}}{\mathrm{d}t}\psi_t(x) = u_t(\psi_t(x))$$

Pros: velocities are *linear*

Cons: simulate to sample

The flow gives you the marginal probability path

Velocity u_t generates p_t if

$$X_t = \psi_t(X_0) \sim p_t$$

 u_t Marginal Flow

 p_t Marginal Probability Path

We want u_t which is given by P_t .

Great! But what is the actual marginal flow?? We don't have this!

The Marginalization Trick

Theorem*: The marginal velocity generates the marginal probability path.

$$u_t(x) = \mathbb{E}\left[u_t(X_t|X_1)|X_t = x\right]$$
 $p_t(x) = \mathbb{E}_{X_1} p_{t|1}(x|X_1)$

Build flow from conditional flows

Generate a single target point

$$X_t = \psi_t(X_0 | x_1) = (1 - t)X_0 + tx_1$$

 $p_{t|1}(x | x_1)$ conditional probability

 $u_t(x \mid x_1)$ conditional velocity

Build flow from conditional flows

Generate a single target point

$$X_t = \psi_t(X_0 | x_1) = (1 - t)X_0 + tx_1$$

$$p_t(x) = \mathbb{E}_{X_1} p_{t|1}(x \mid X_1)$$
 average
$$u_t(x) = \mathbb{E} \left[u_t(X_t \mid X_1) \mid X_t = x \right]$$
 average
$$u_t(x) = u_t(x \mid X_1)$$
 conditional velocity

Flow Matching Loss

Flow Matching loss:

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t,X_t} \left\| u_t^{\theta}(X_t) - u_t(X_t) \right\|^2$$

Conditional Flow Matching loss:

$$\mathcal{L}_{CFM}(\theta) = \mathbb{E}_{t,X_1,X_t} \left\| u_t^{\theta}(X_t) - u_t(X_t \mid X_1) \right\|^2$$

Theorem: Losses are equivalent,

$$\nabla_{\theta} \mathcal{L}_{\text{FM}}(\theta) = \nabla_{\theta} \mathcal{L}_{\text{CFM}}(\theta)$$

Training: Flow Matching vs. Diffusion

Algorithm 1: Flow Matching training. Input : dataset q, noise pInitialize v^{θ} while not converged do $t \sim \mathcal{U}([0,1])$ > sample time $x_1 \sim q(x_1)$ > sample data $x_0 \sim p(x_0)$ > sample noise $x_t = \Psi_t(x_0|x_1)$ > conditional flow Gradient step with $\nabla_{\theta} \|v_t^{\theta}(x_t) - \dot{x}_t\|^2$

```
Output: v^{\theta}
```

```
p_t(x_t | x_1) general
p(x_0) is general
```

```
Algorithm 2: Diffusion training.
 Input : dataset q, noise p
 Initialize s^{\theta}
 while not converged do
     t \sim \mathcal{U}([0,1]) \triangleright sample time
     x_1 \sim q(x_1) > sample data
     x_t = p_t(x_t|x_1) > sample conditional prob
     Gradient step with
      \nabla_{\theta} \|s_t^{\theta}(x_t) - \nabla_{x_t} \log p_t(x_t|x_1)\|^2
 Output: v^{\theta}
```

```
p_t(x_t | x_1) closed-form from of SDE dx_t = f_t dt + g_t dw
      • Variance Exploding: p_t(x \mid x_1) = \mathcal{N}(x \mid x_1, \sigma_{1-t}^2 I)
          Variance Preserving: p_t(x \mid x_1) = \mathcal{N}(x \mid \alpha_{1-t}x_1, (1 - \alpha_{1-t}^2)I)
                                                                        \alpha_t = e^{-\frac{1}{2}T(t)}
p(x_0) is Gaussian
p_0(\cdot | x_1) \approx p
```

Marginal Flow ~ Score Function

- Both Flow Matching and Diffusion Models aim to predict the expectation of denoised data given some noisy sample $\mathbb{E}[x_1 | x_t]$
- Tweedie's Formula says this recovers the score function, the gradient of the log likelihood. We can climb this gradient SGD-style to arrive at a sample.

$$\mathbb{E}[x_1 | x_t] = x_t + \sigma_t^2 \nabla_{x_t} \log p_t(x_t)$$

Flow Matching essentially generalizes the score matching concept

Maurice Tweedie

Flow Matching Perspective

Advantages

- Generalization of Diffusion Models and Continuous Normalizing Flow
- The noise process can be anything as long as boundaries are set
- Any source distribution can be used
- The steps are continuous
- The training method is simulation free (as opposed to CNF variants)

The Marginalization Trick

Theorem*: The marginal velocity generates the marginal probability path.

$$u_t(x) = \mathbb{E}\left[u_t(X_t | X_1) | X_t = x\right]$$
 $p_t(x) = \mathbb{E}_{X_1} p_{t|1}(x | X_1)$

$$u_t(x) = \int u_t(x \mid x_1) \frac{p_t(x \mid x_1) q(x_1)}{p_t(x)} dx_1 \qquad p_t(x) = \int p_t(x \mid x_1) q(x_1) dx_1$$
$$p_t(x) = \sum_{x_1} p_t(x \mid x_1) q(x_1)$$

Geometric Intuition

Path from
$$x_t$$
 to x_0

$$u_t(x_t) = \sum_{x_0} u_t(x_t \mid x_0) \frac{p_t(x_t \mid x_0)}{p_t(x_t)} \ q(x_0)$$
Marginal Flow Path Weight

Just a weighted average of the flow to each data sample!!!!!

You can actually do this non-parametrically.

See interactive visualization at https://decentralizeddiffusion.github.io/

Efros & Leung ICCV'99

Non-parametric patch-based NN sampling to fill in missing details & generate textures

Scene Completion Using Millions of Photographs

James Hays Alexei A. Efros Carnegie Mellon University

Original Image Input Scene Matches Output

Figure 1: Given an input image with a missing region, we use matching scenes from a large collection of photographs to complete the image.

Non-parametric patch-based NN approach to fill in missing details with lots of Data!

Key message

- One can minimize the diffusion objective (marginal flow) non-parametrically and perfectly minimize the loss.
- But there is no learning! No ability to generate new images!
- i.e. Exactly minimizing this objective does not guarantee interpolation/ compositionally, learning of the image manifold!
- Parametrizing it with neural networks results in magic smoothing to generate new images and interpolate between them. Exactly what makes this possible still active area of research