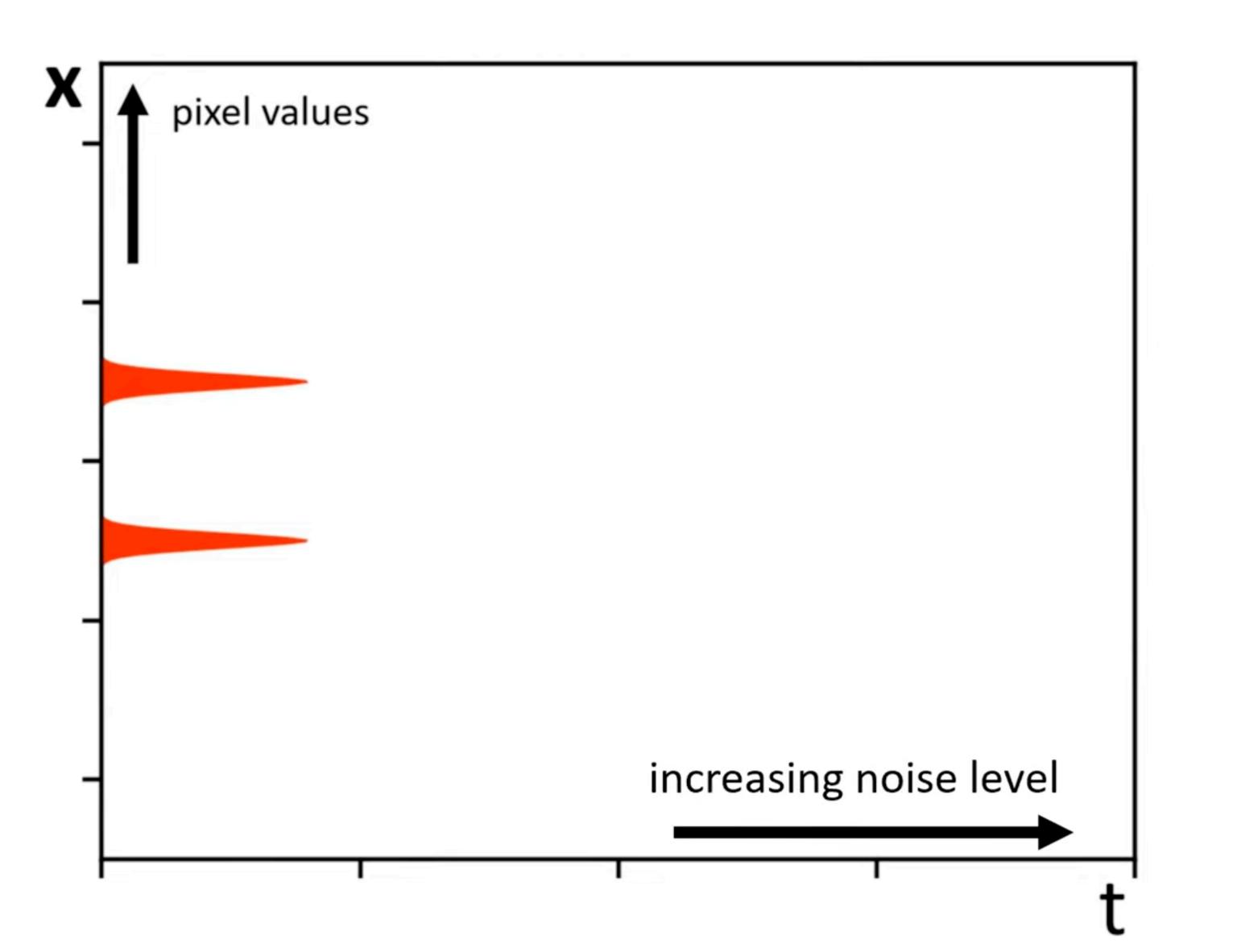
Diffusion Models 2 Practicals

CS280

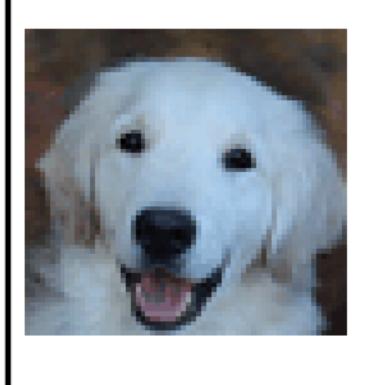
Songwei Ge & David McAllister

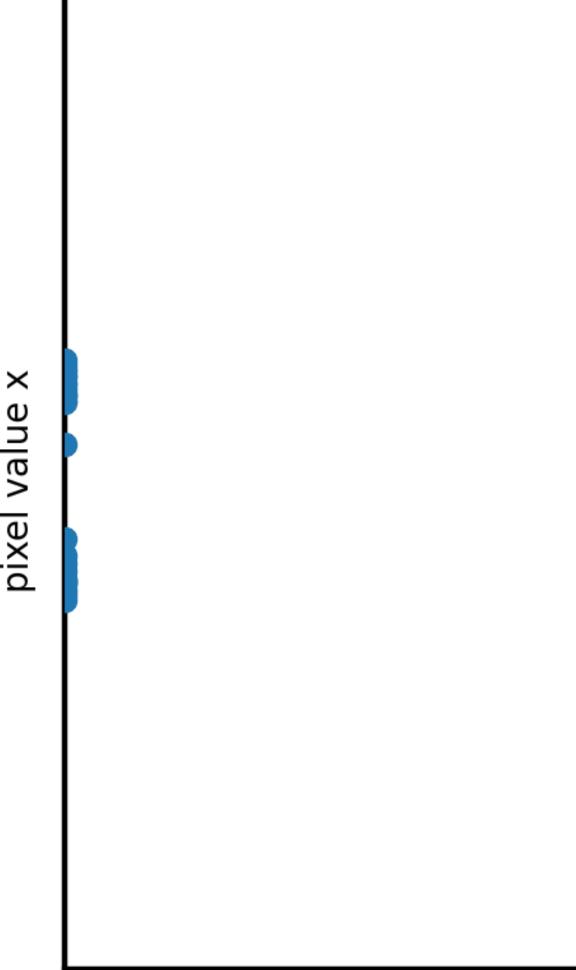
Outline

- Flow matching model samplers
- Inversion/Distillation
- Guidance
- Application



pixel value x

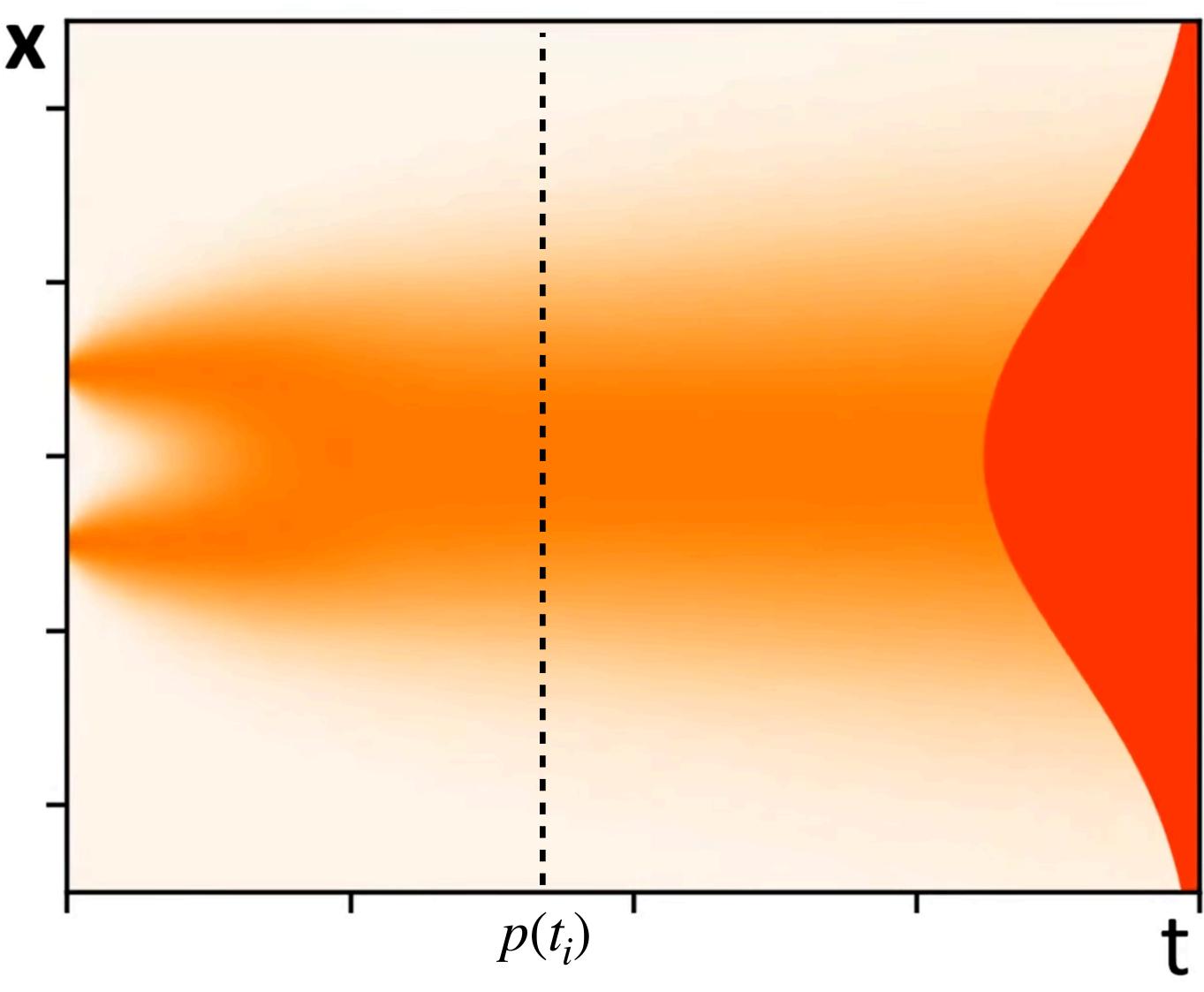


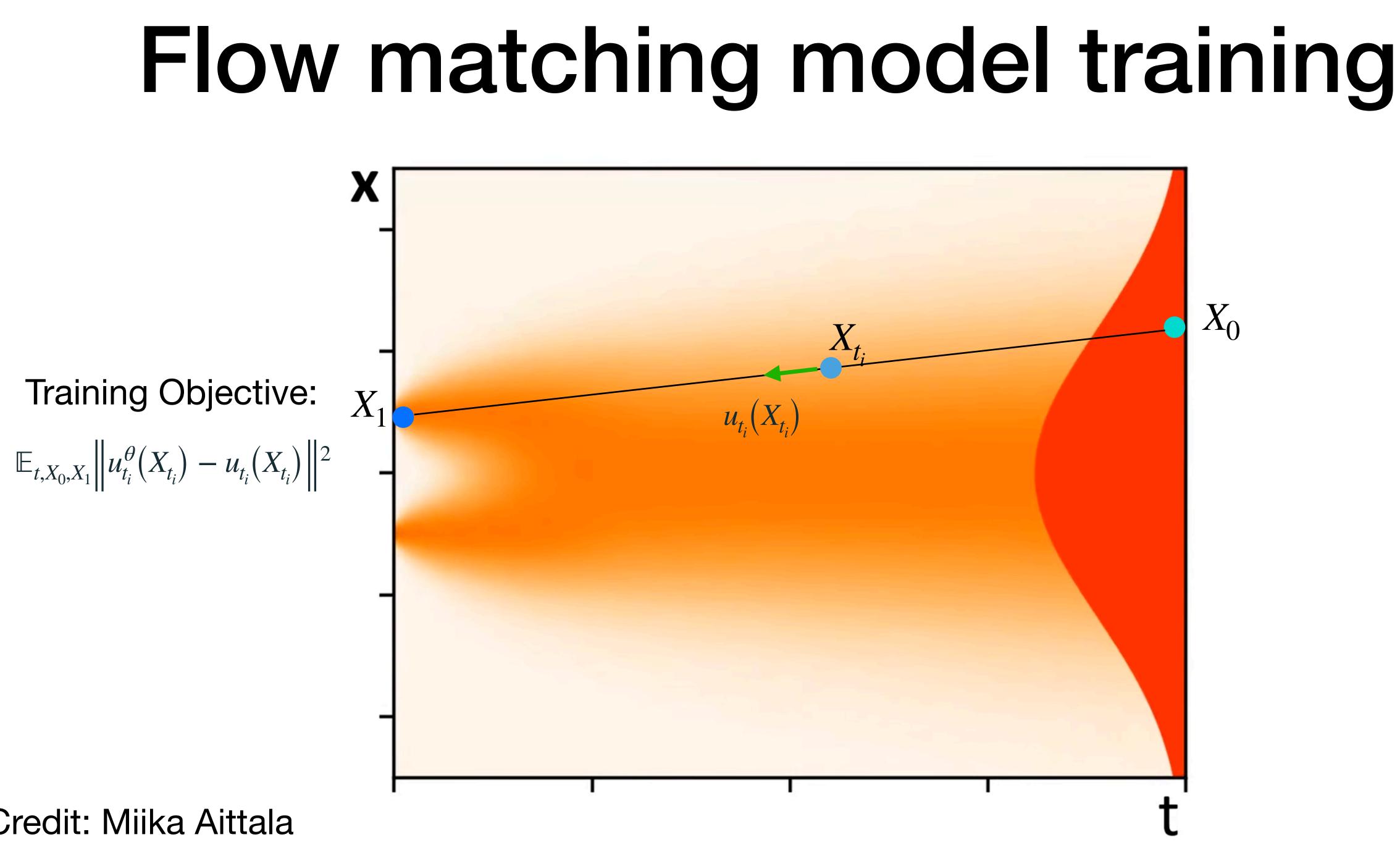


pixel value

Credit: Miika Aittala

time t



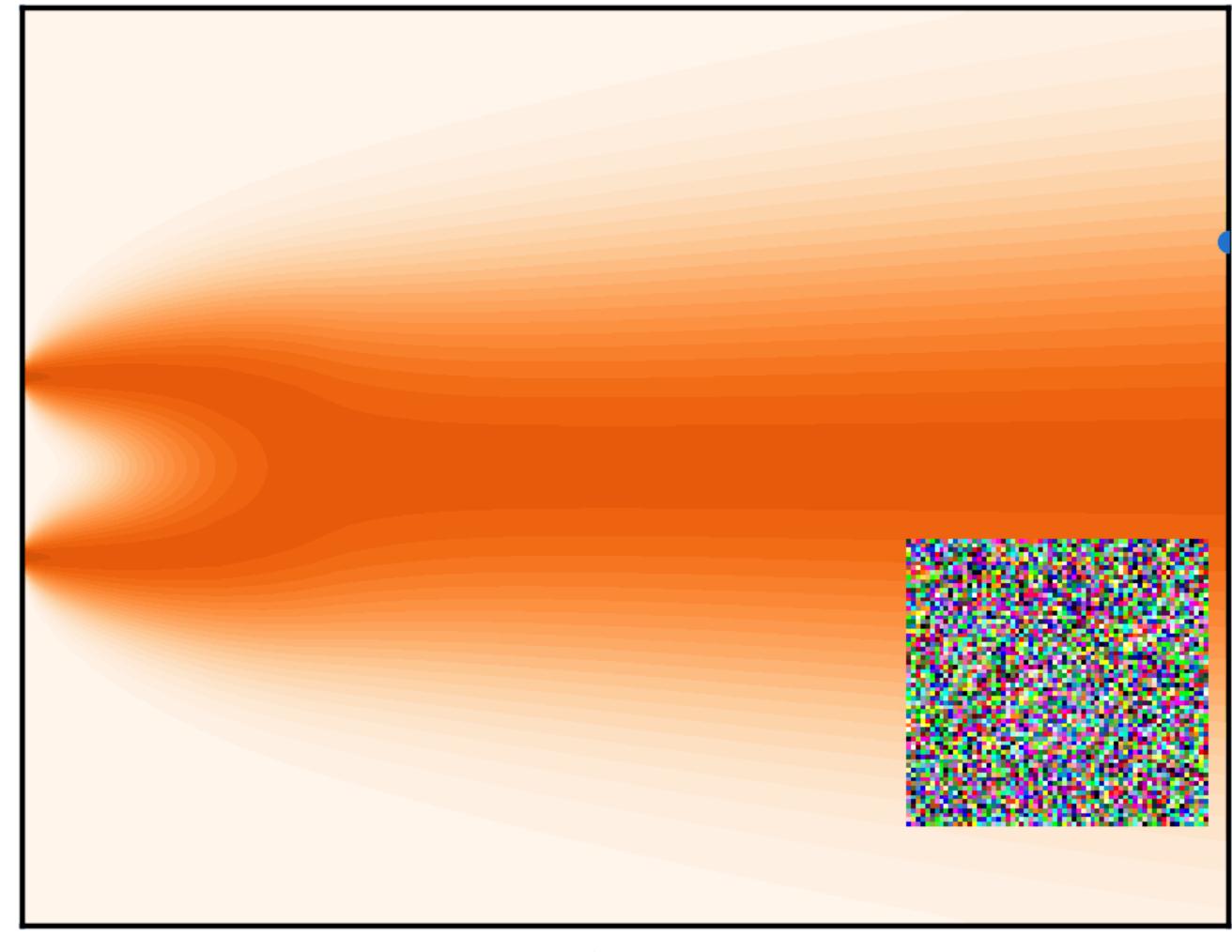


Sampling by solving the flow ODE

Flow ODE

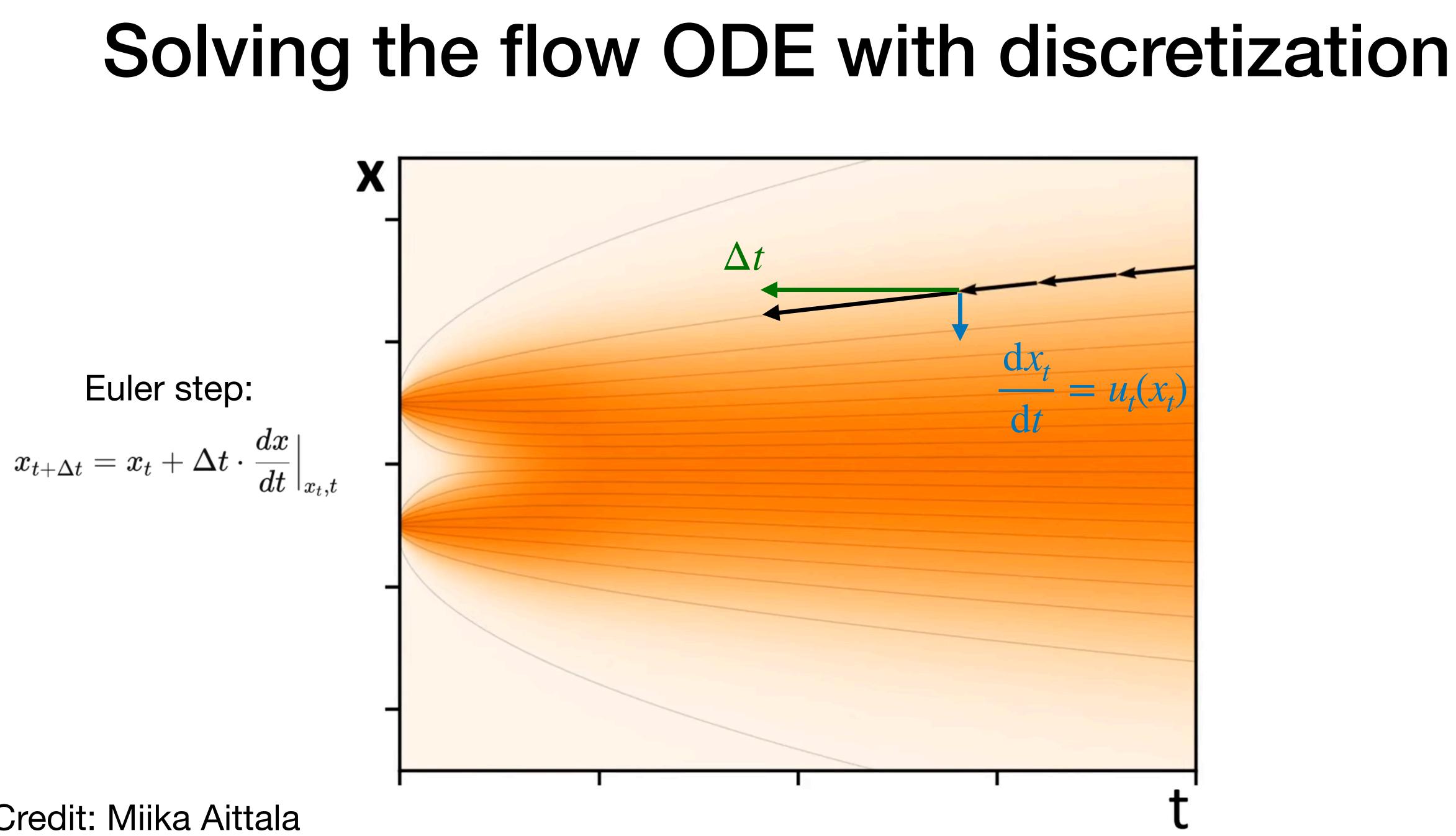
$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = u_t^{\theta}(x_t)$$

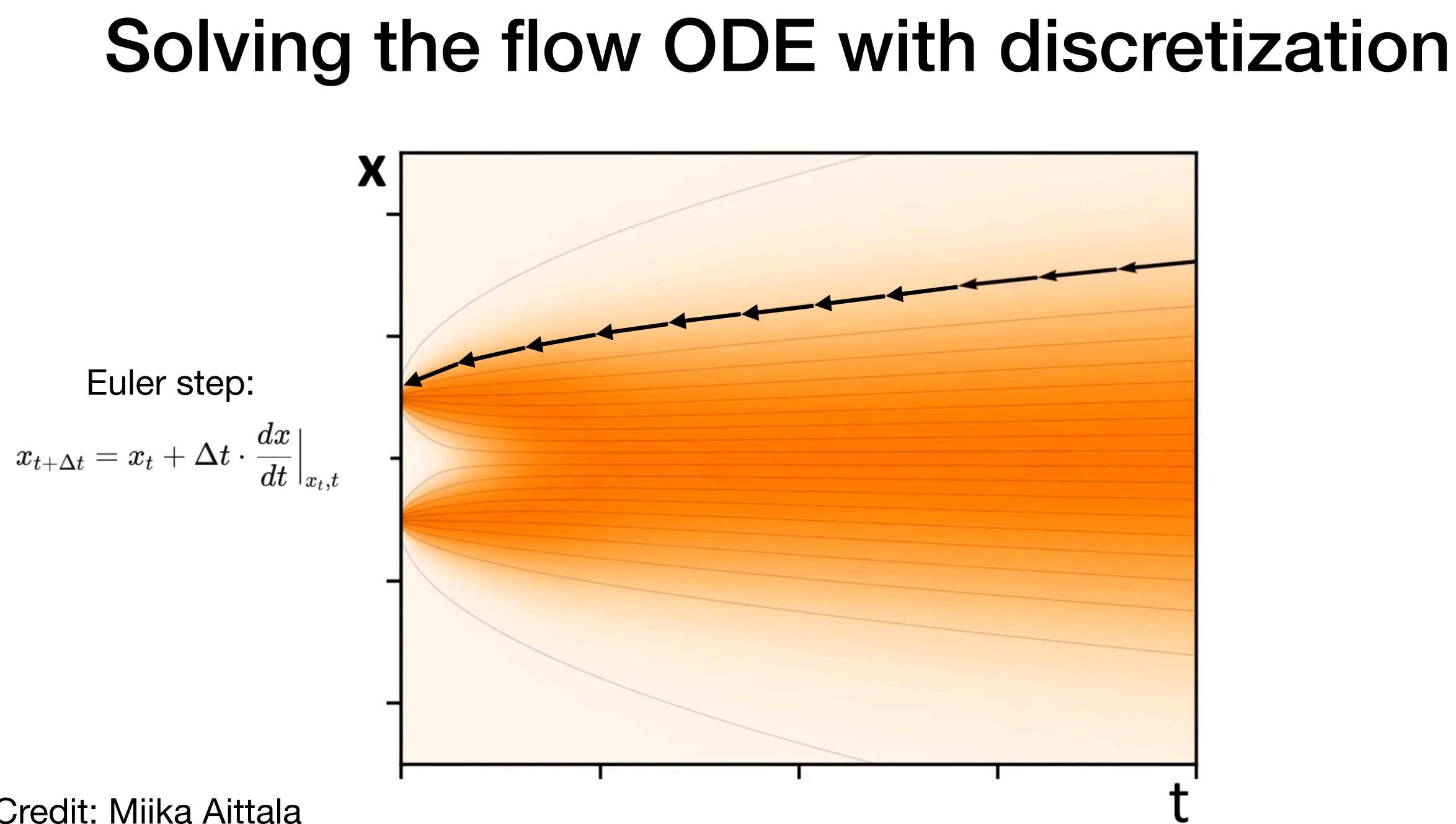
pixel value x



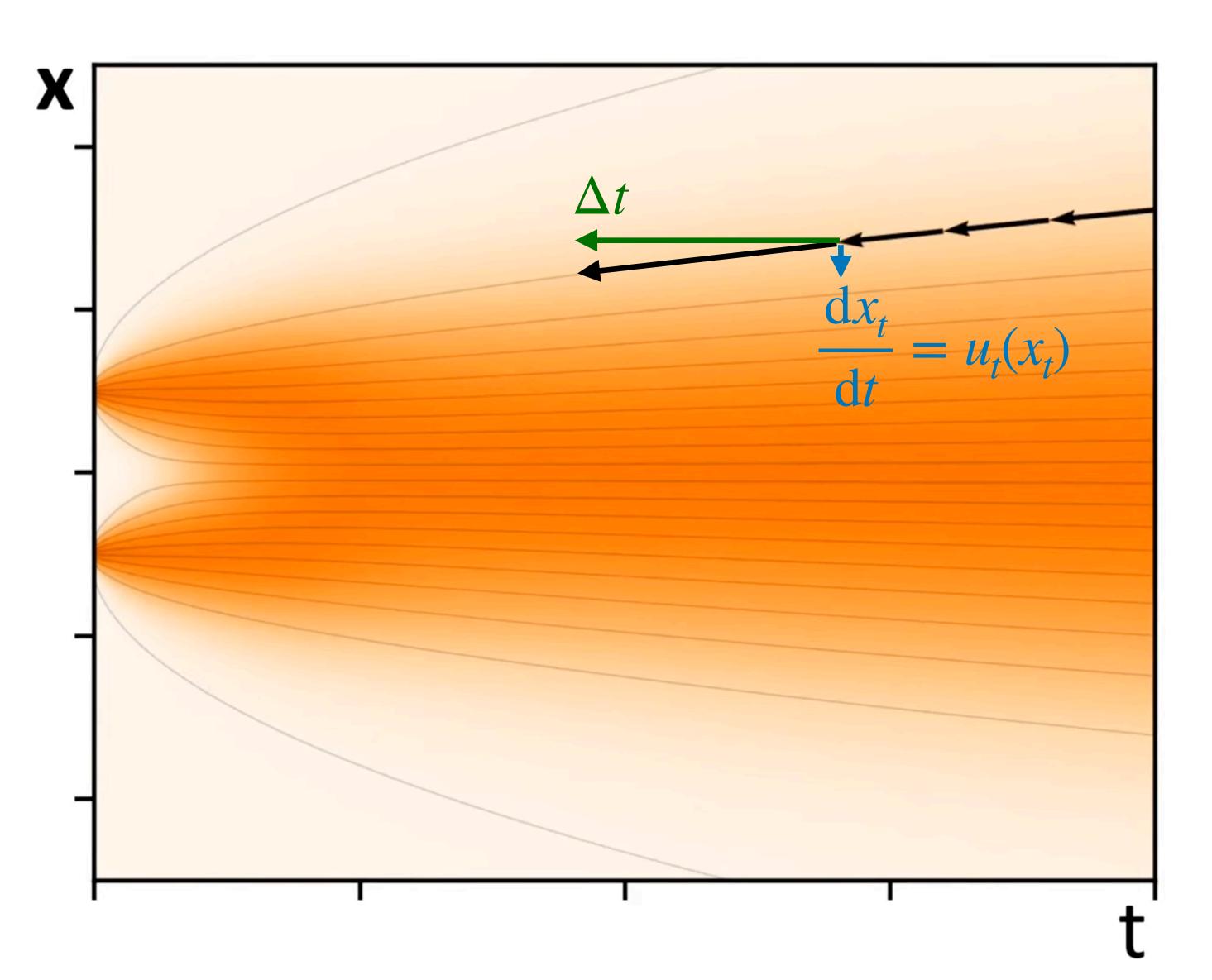
Credit: Miika Aittala

time t

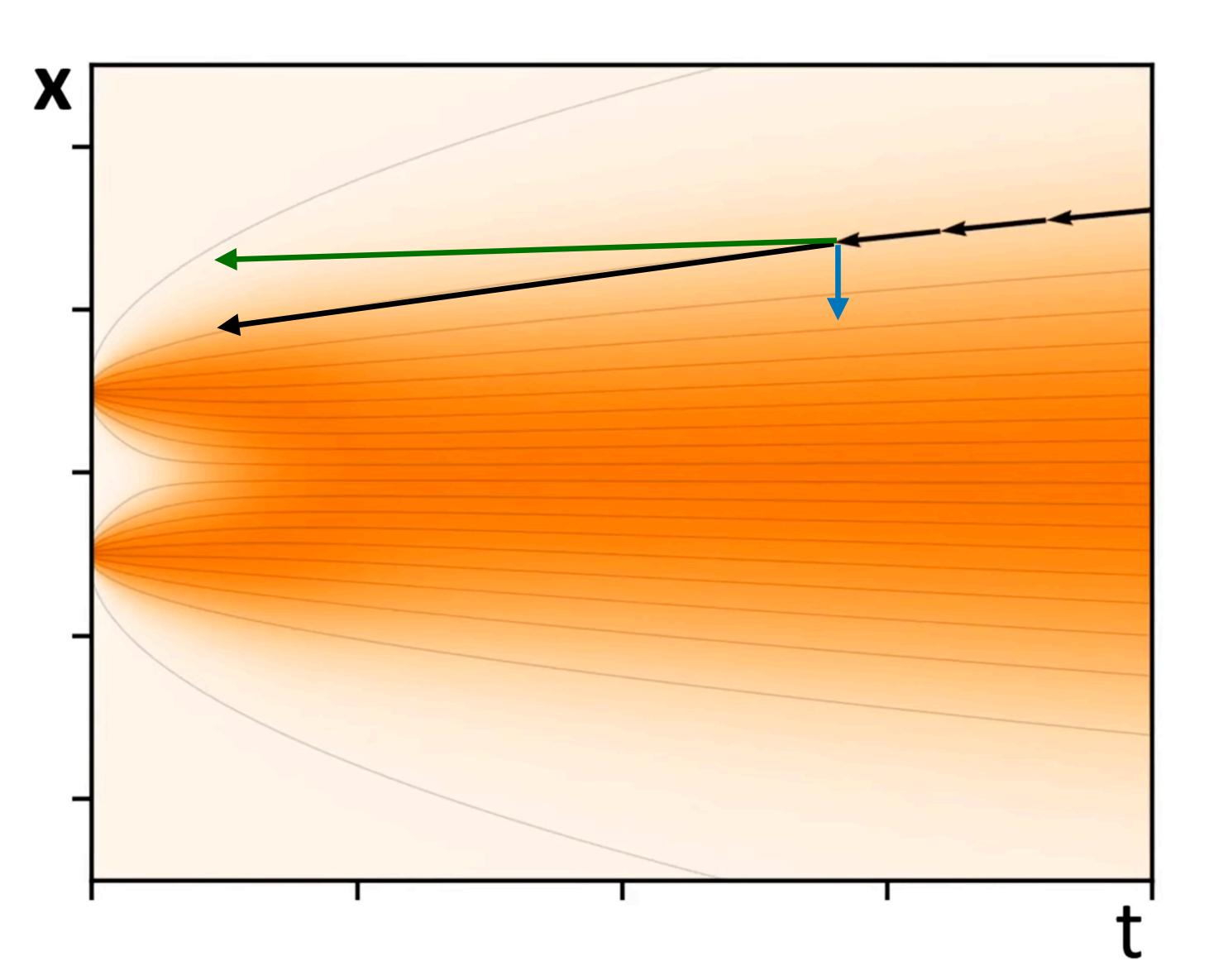




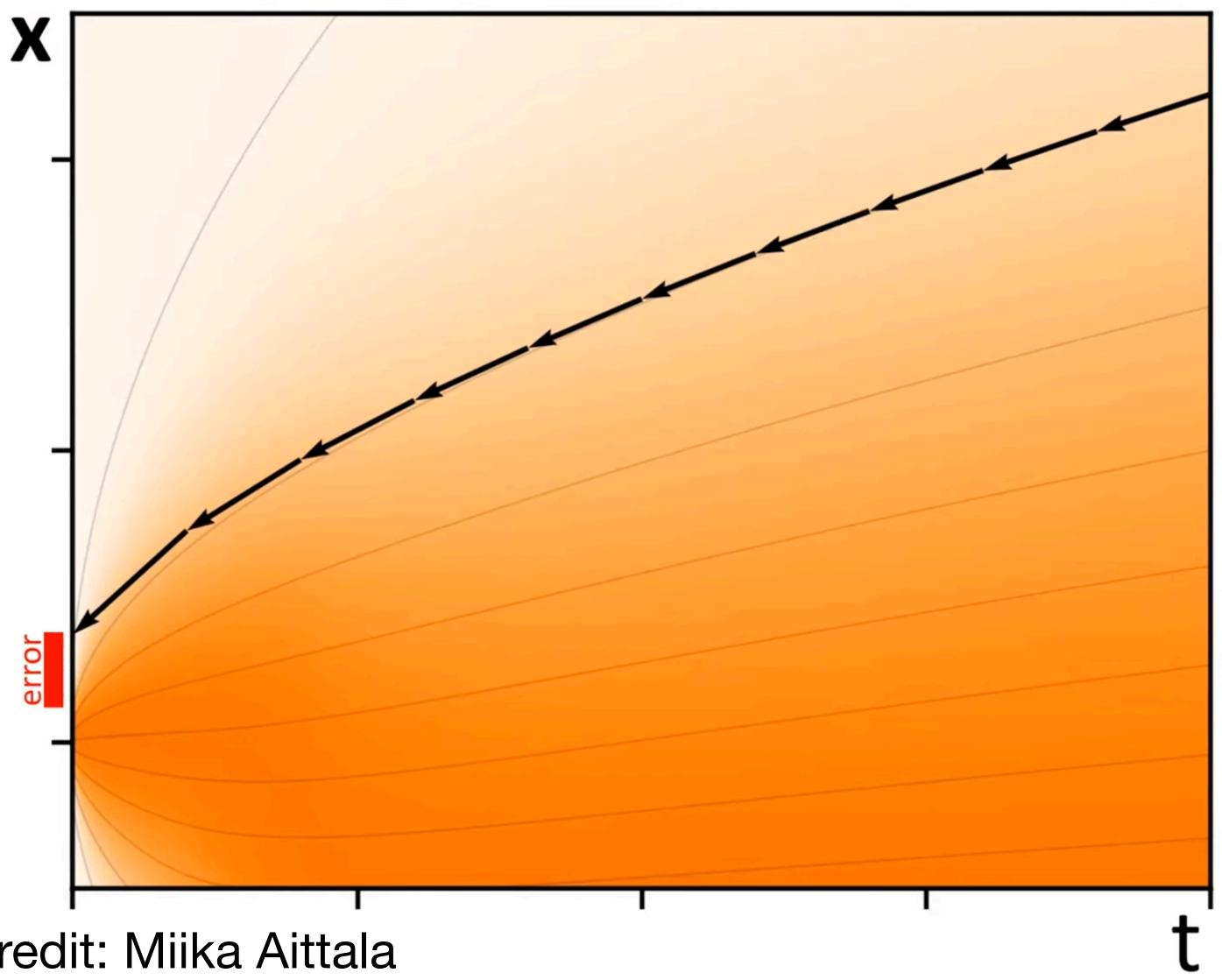
What can go wrong with this sampling process



What can go wrong with this sampling process



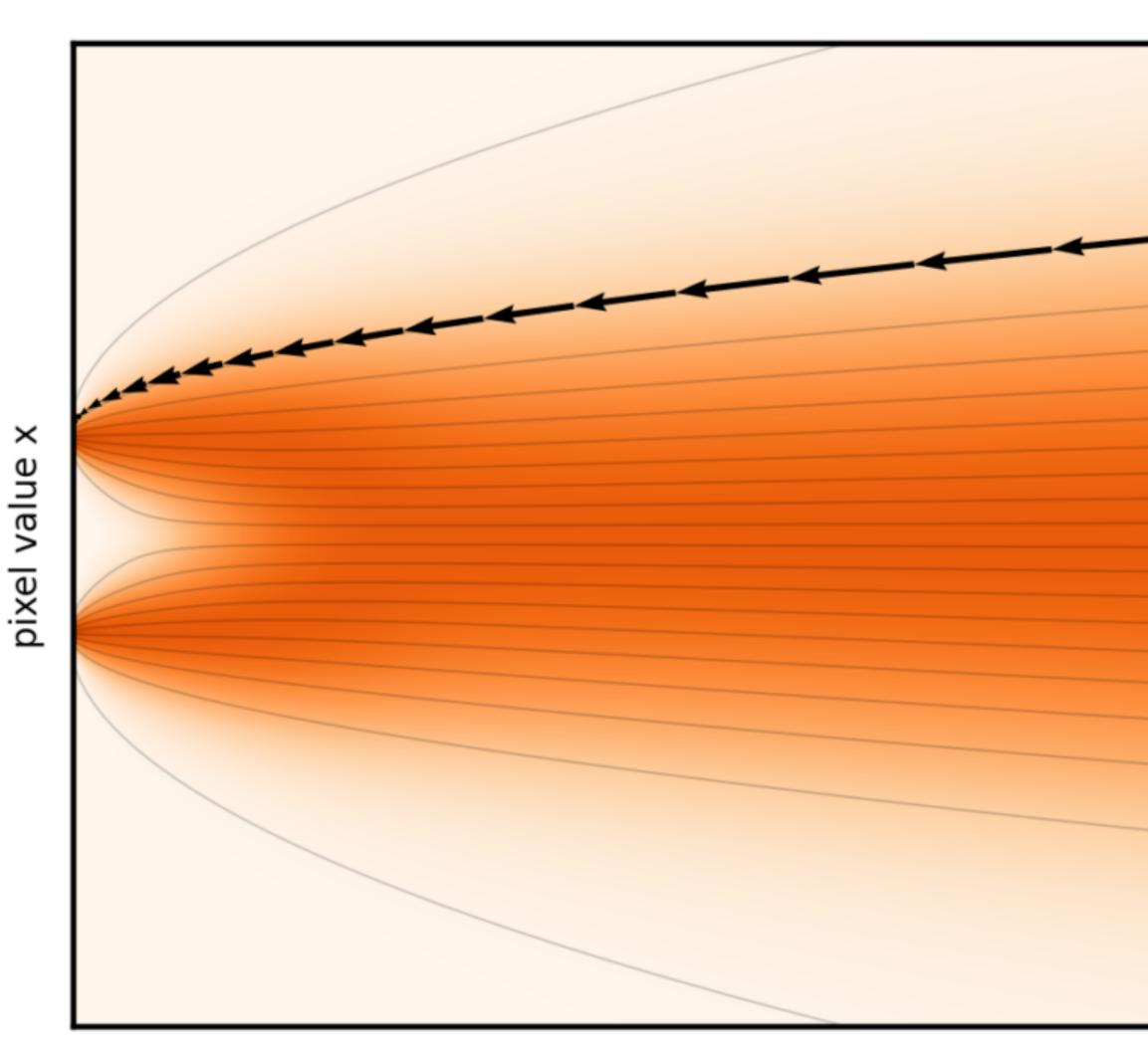
Error Sources when Solving the flow ODE



Credit: Miika Aittala

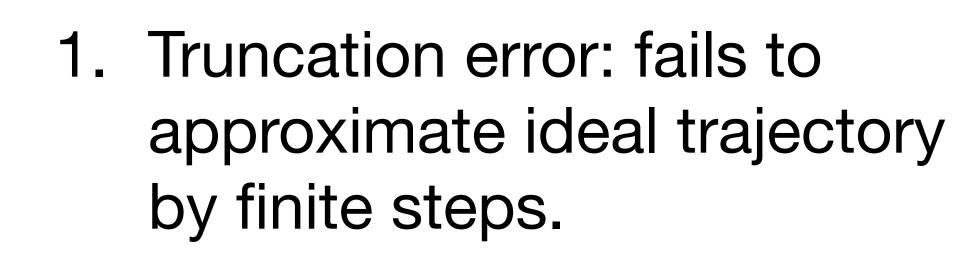
- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
 - 1. Naive solution: sampling with more steps.

Smart Time Step Schedule



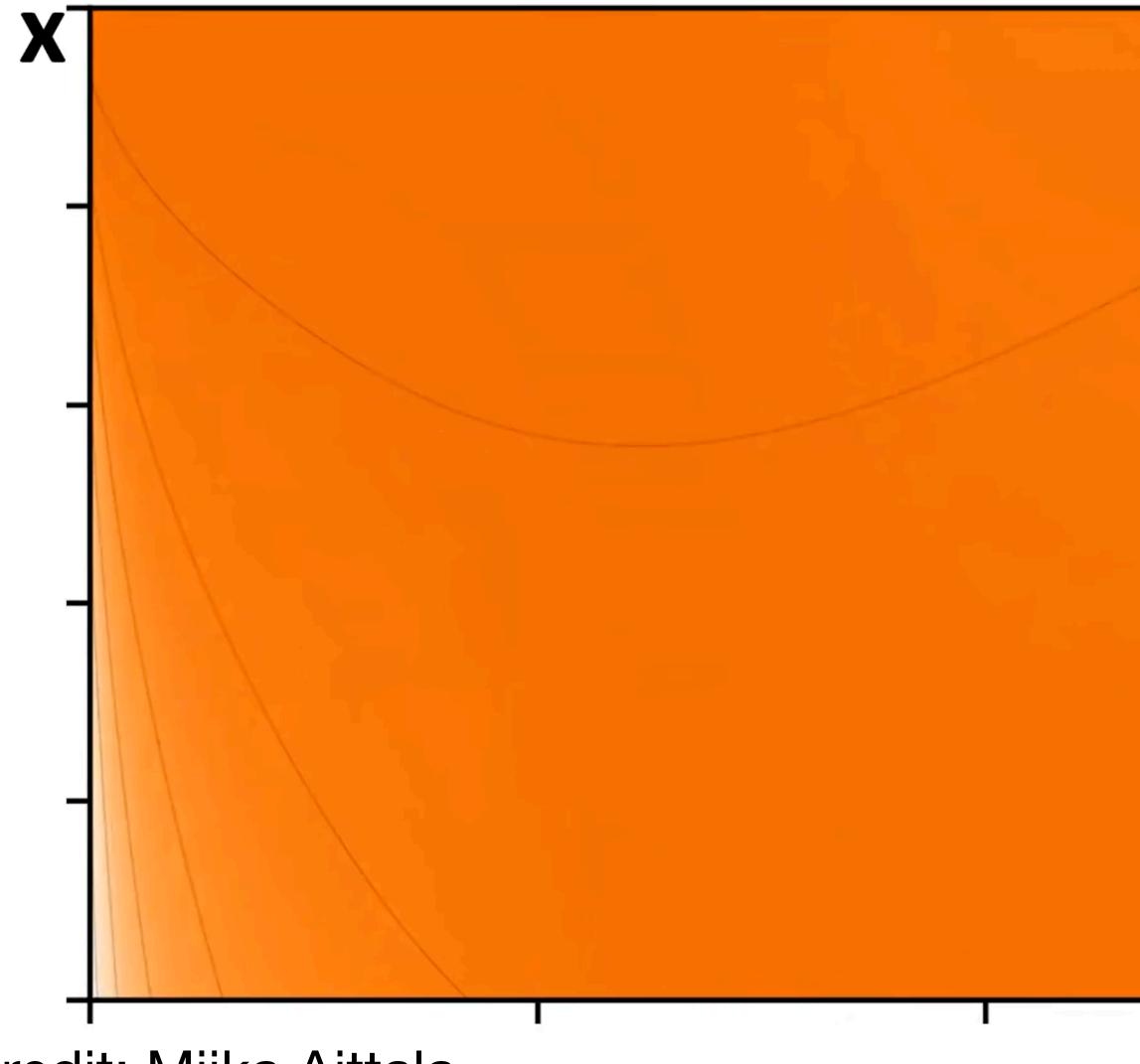
Credit: Miika Aittala

time t



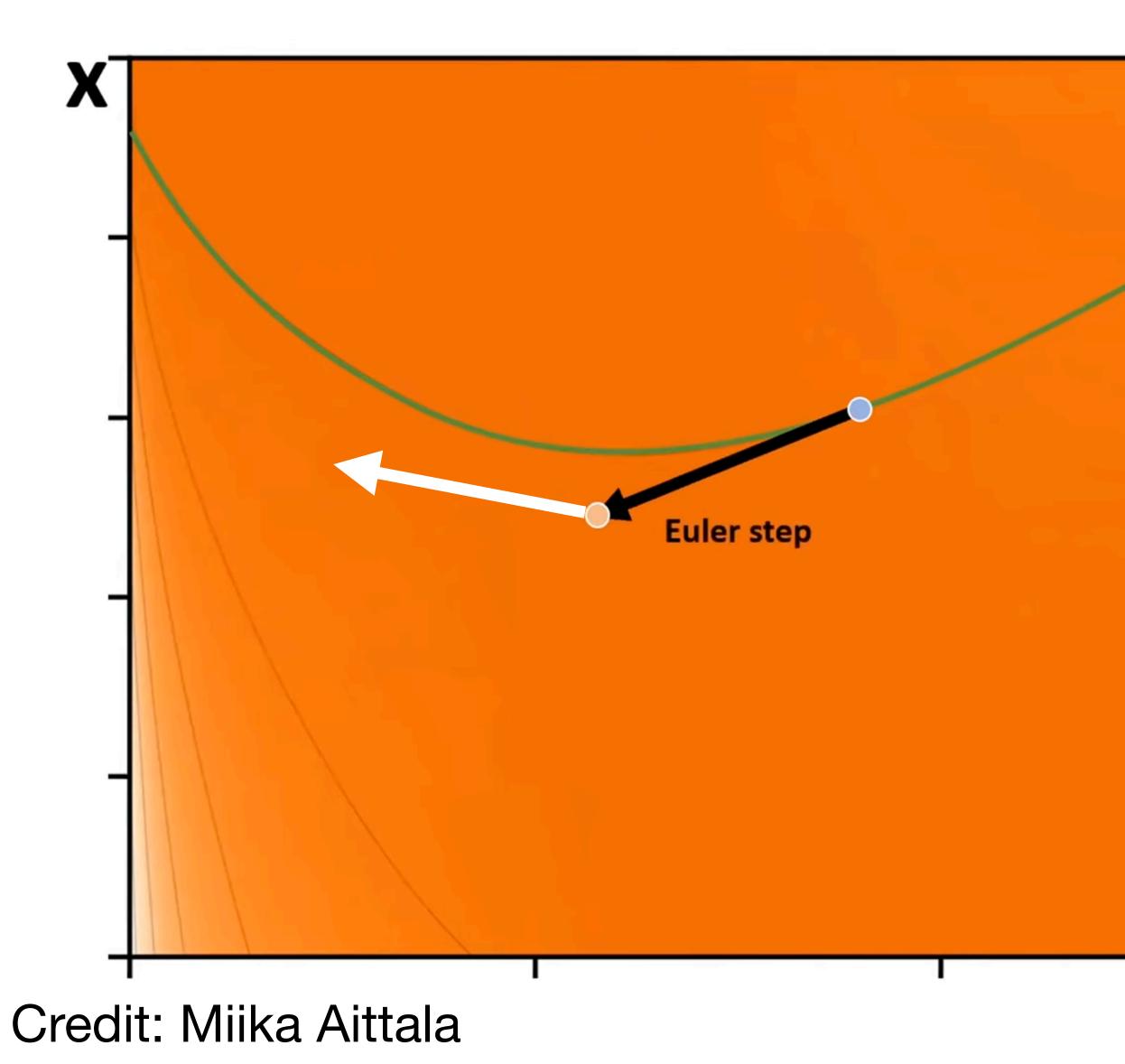
- 1. Naive solution: sampling with more steps.
- 2. Time steps are long at high noise levels and short at low noise levels

Advanced ODE Solvers



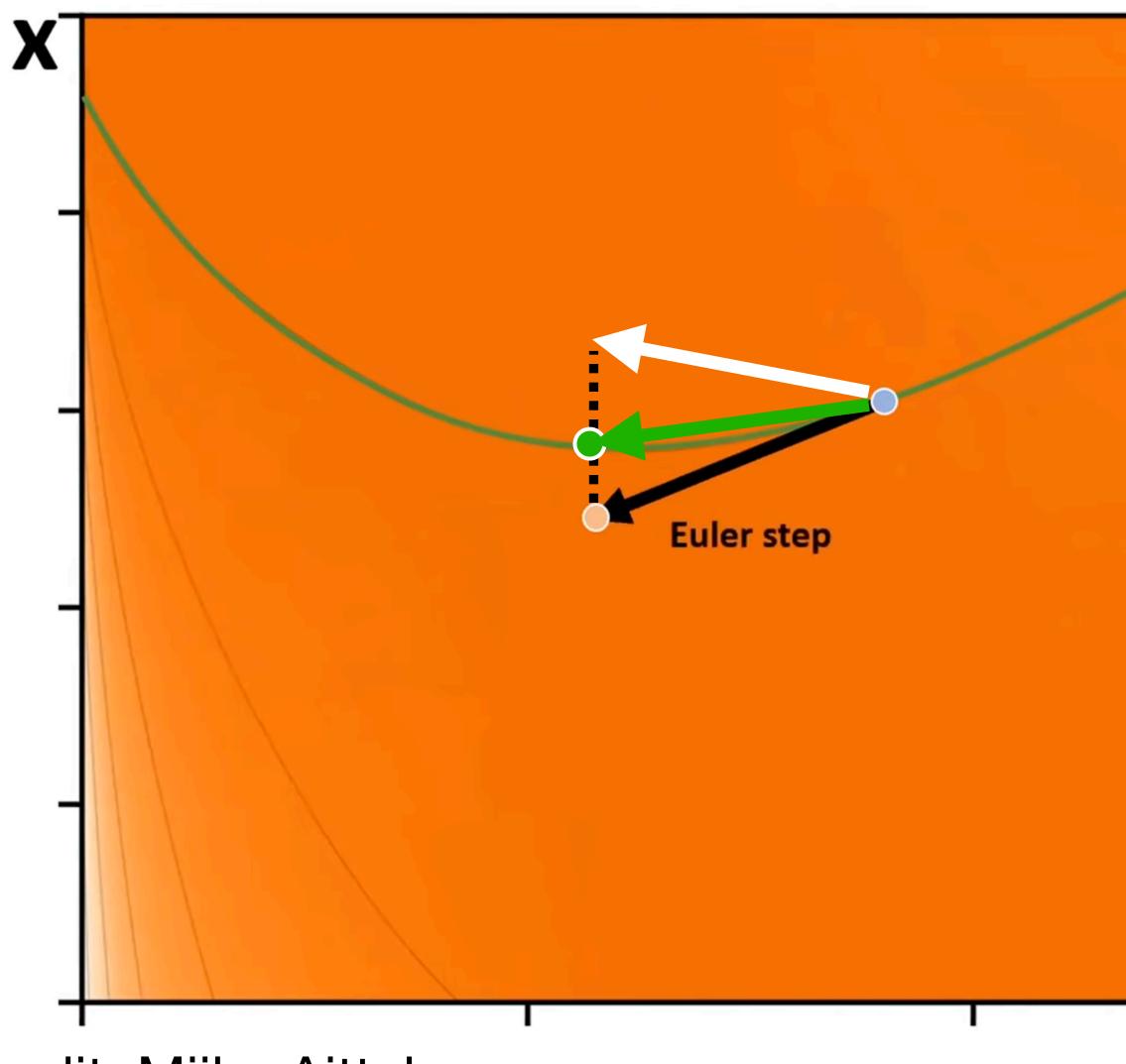
- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
 - 1. Naive solution: sampling with more steps.
 - 2. Time steps are long at high noise levels and short at low noise levels
 - 3. Higher-order ODE solver

Higher-order solvers



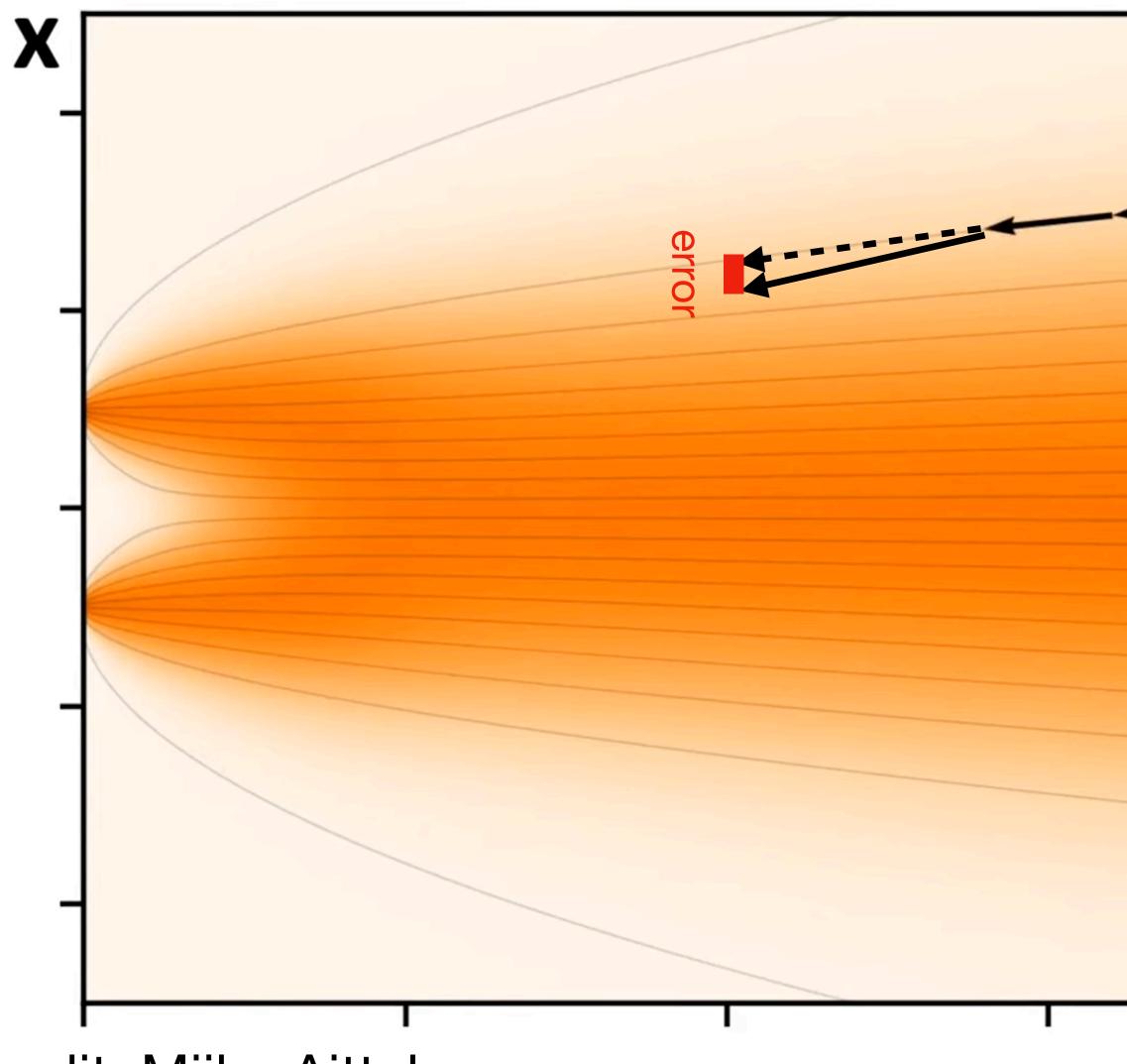
- Clever sub-steps -> higher accuracy though more cost
- 2nd order Heun method as an example

Higher-order solvers



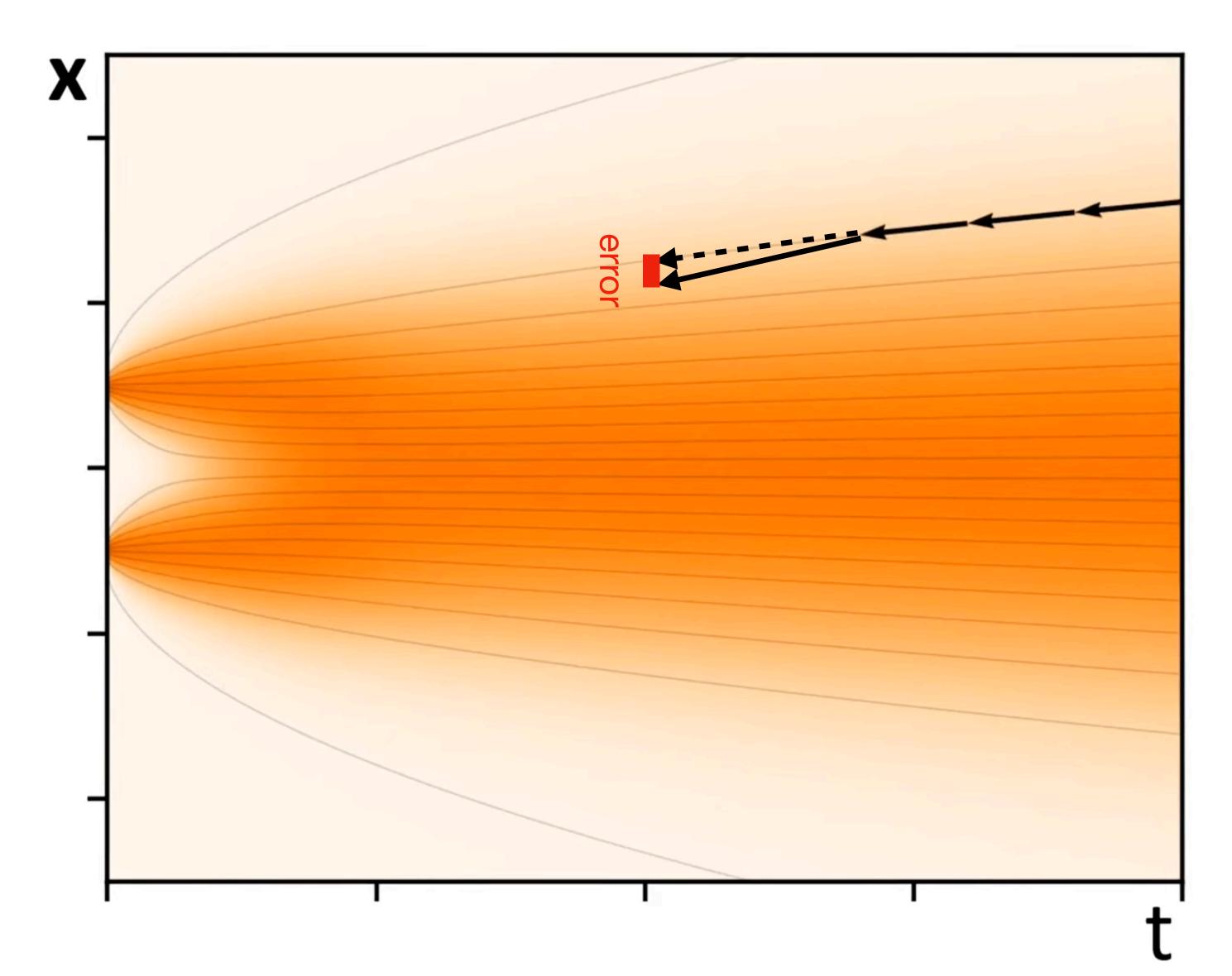
- Clever sub-steps -> higher accuracy though more cost
- 2nd order Heun method as an example

Error Sources when Solving the flow ODE

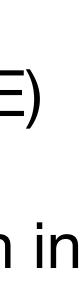


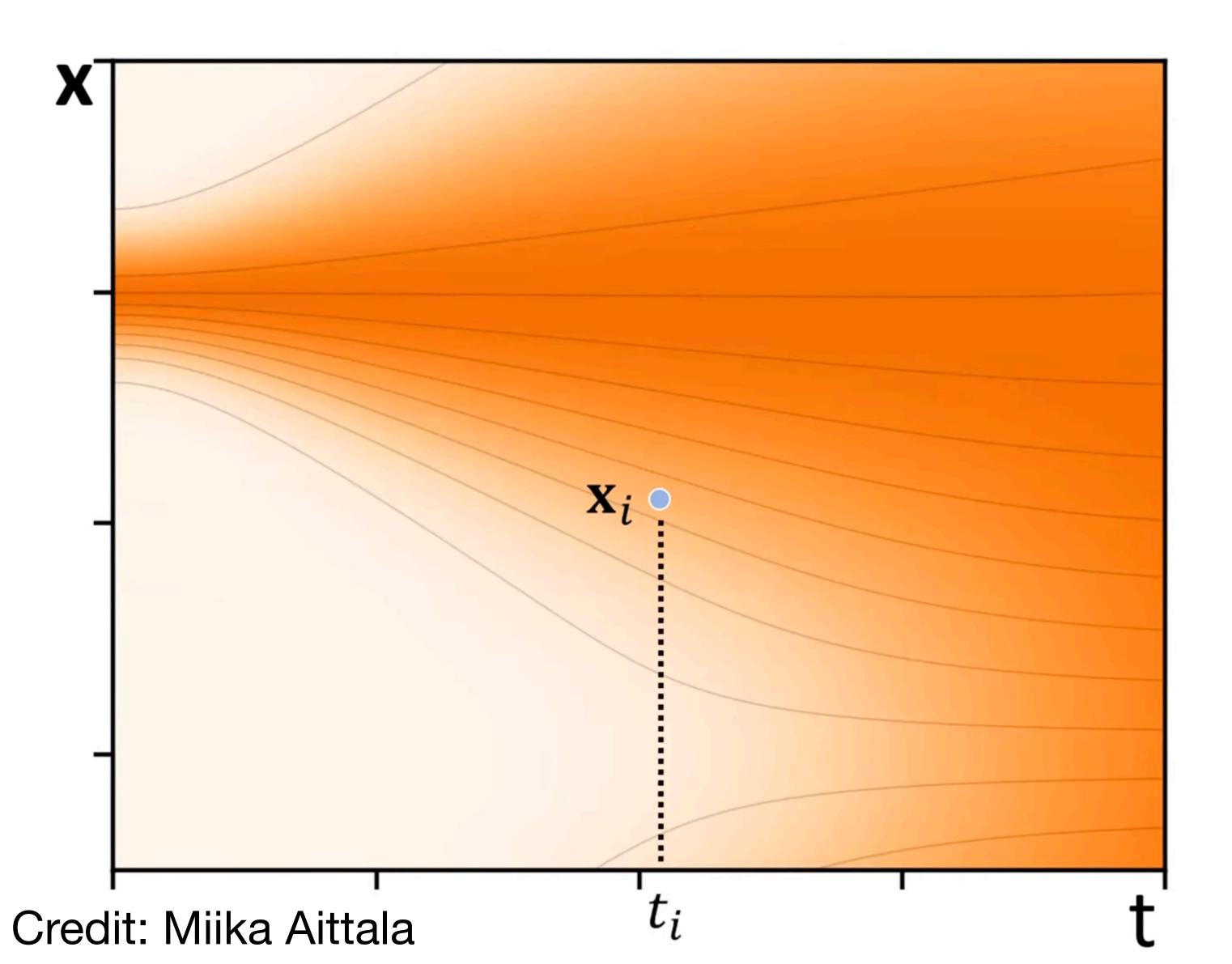
- Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.

Stochastic Sampler

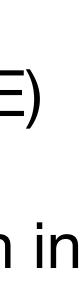


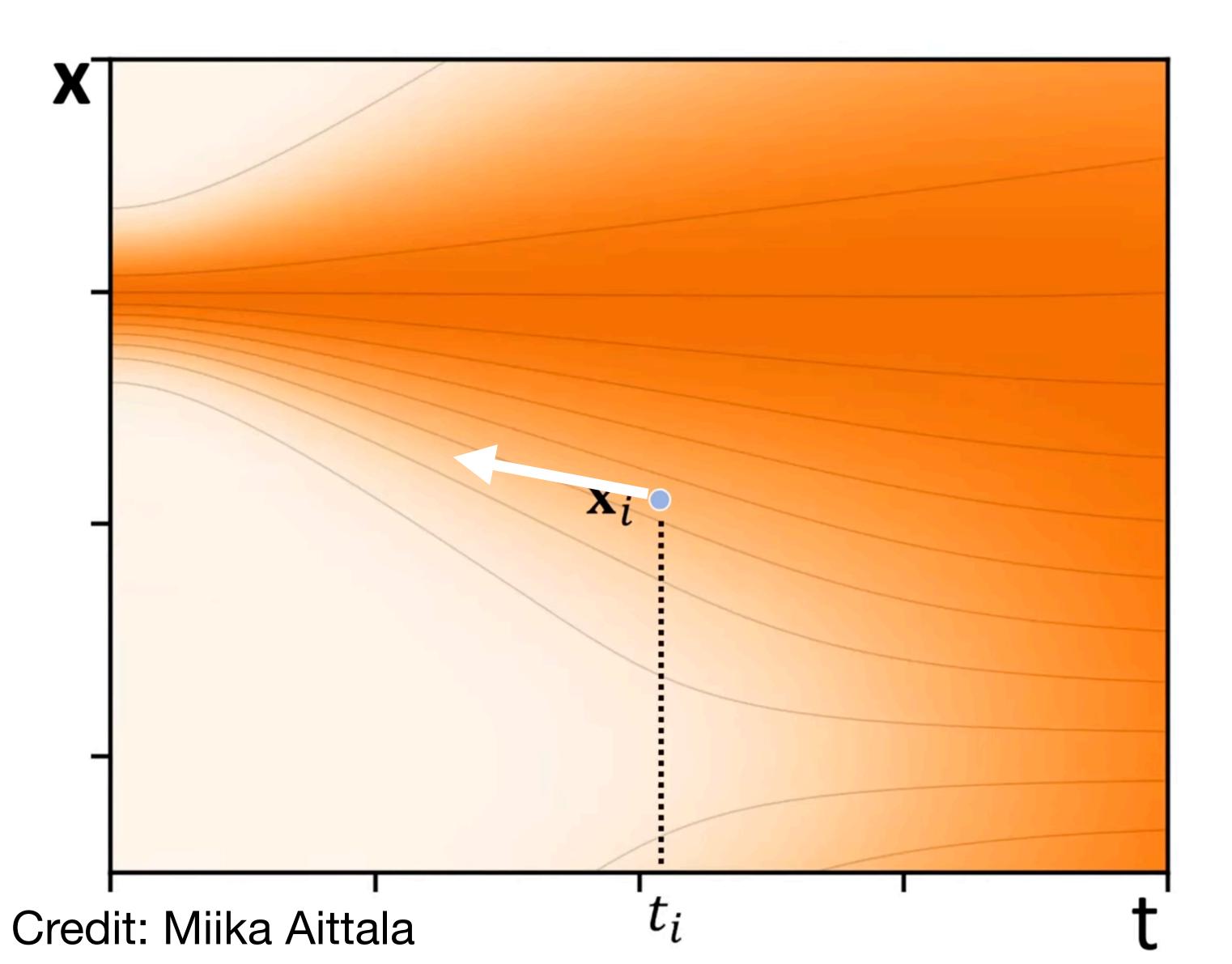
- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution in addition to reducing the noise.



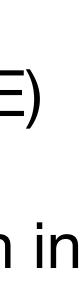


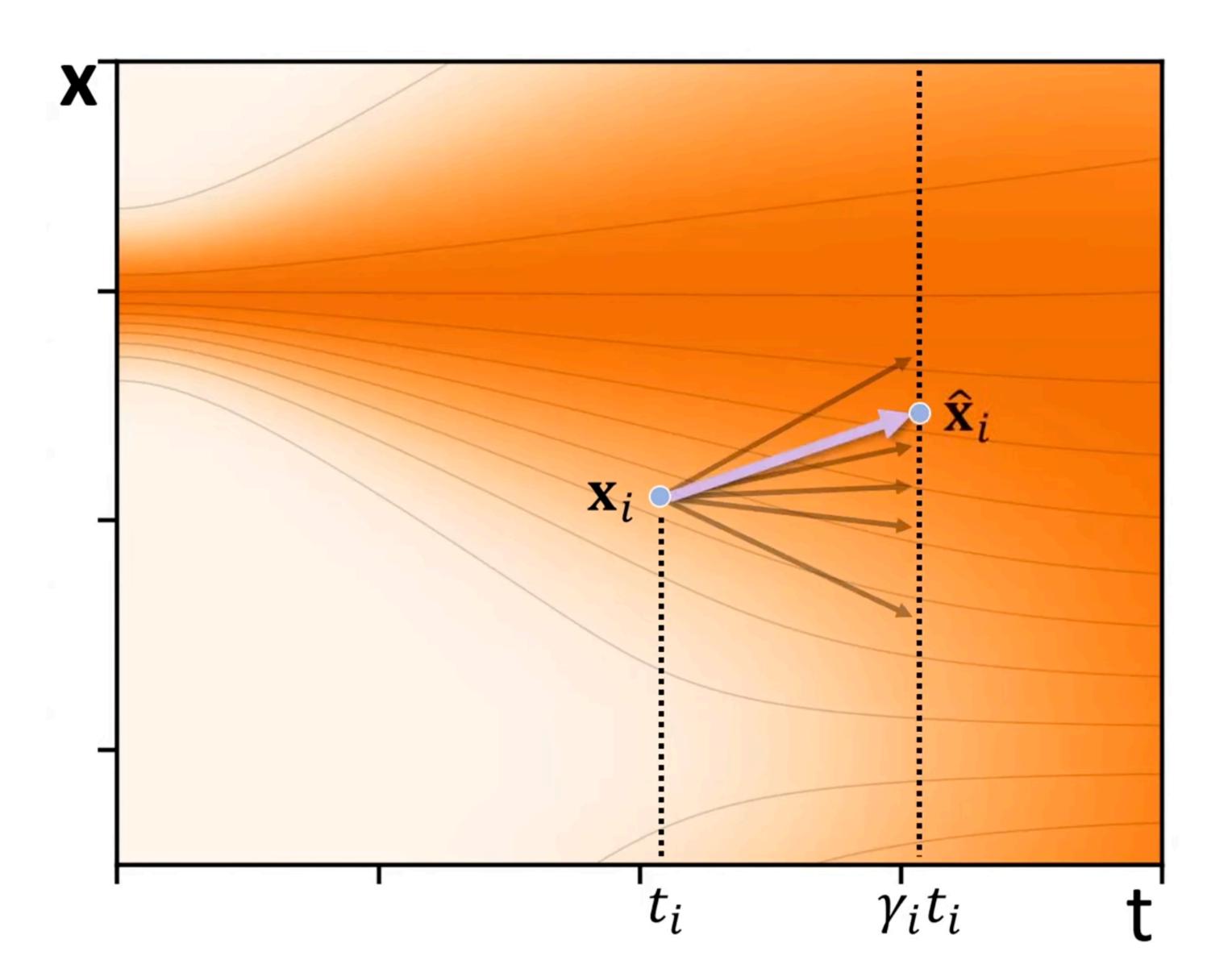
- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution in addition to reducing the noise.



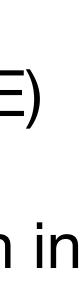


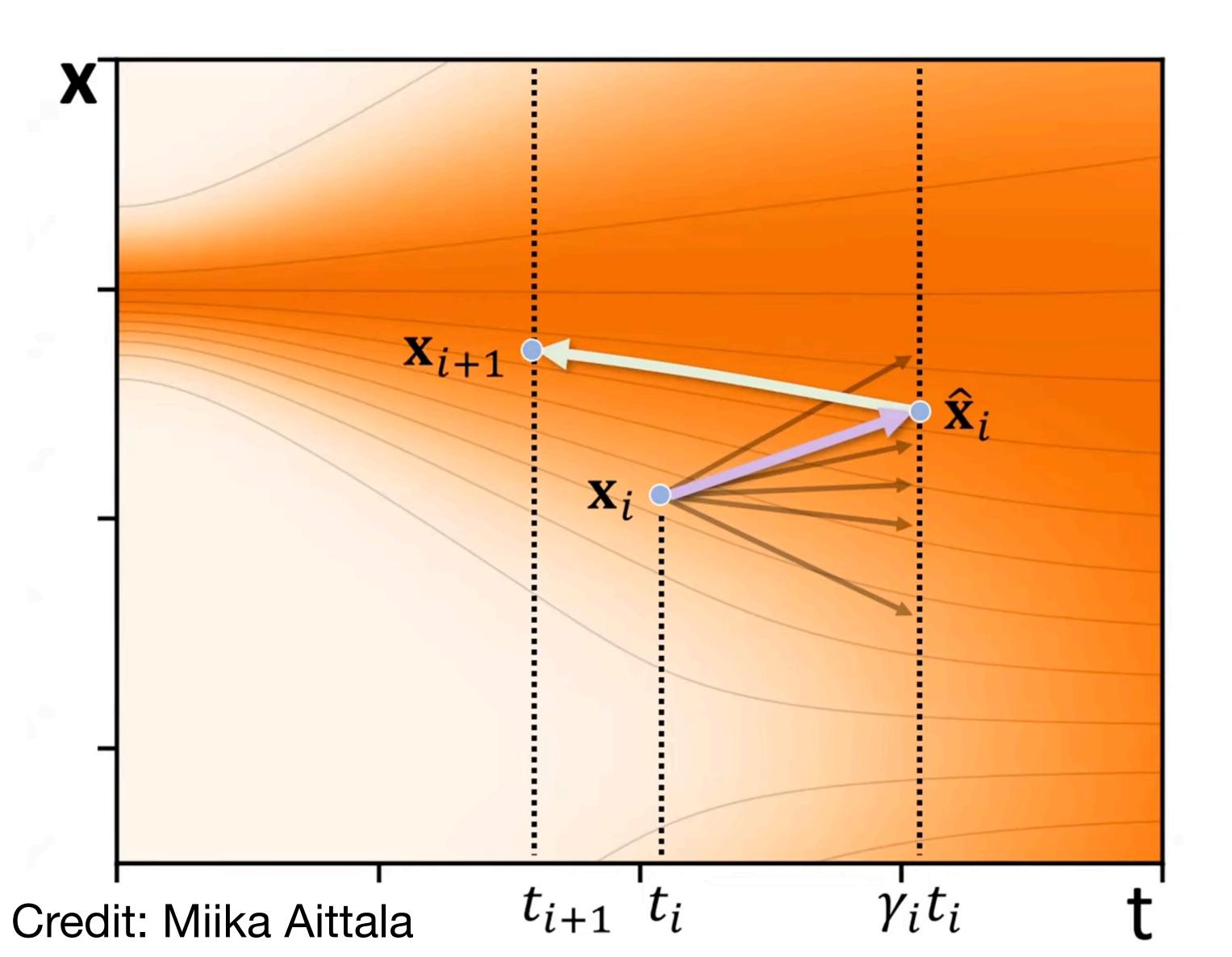
- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution in addition to reducing the noise.



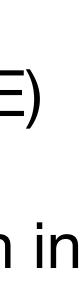


- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution in addition to reducing the noise.

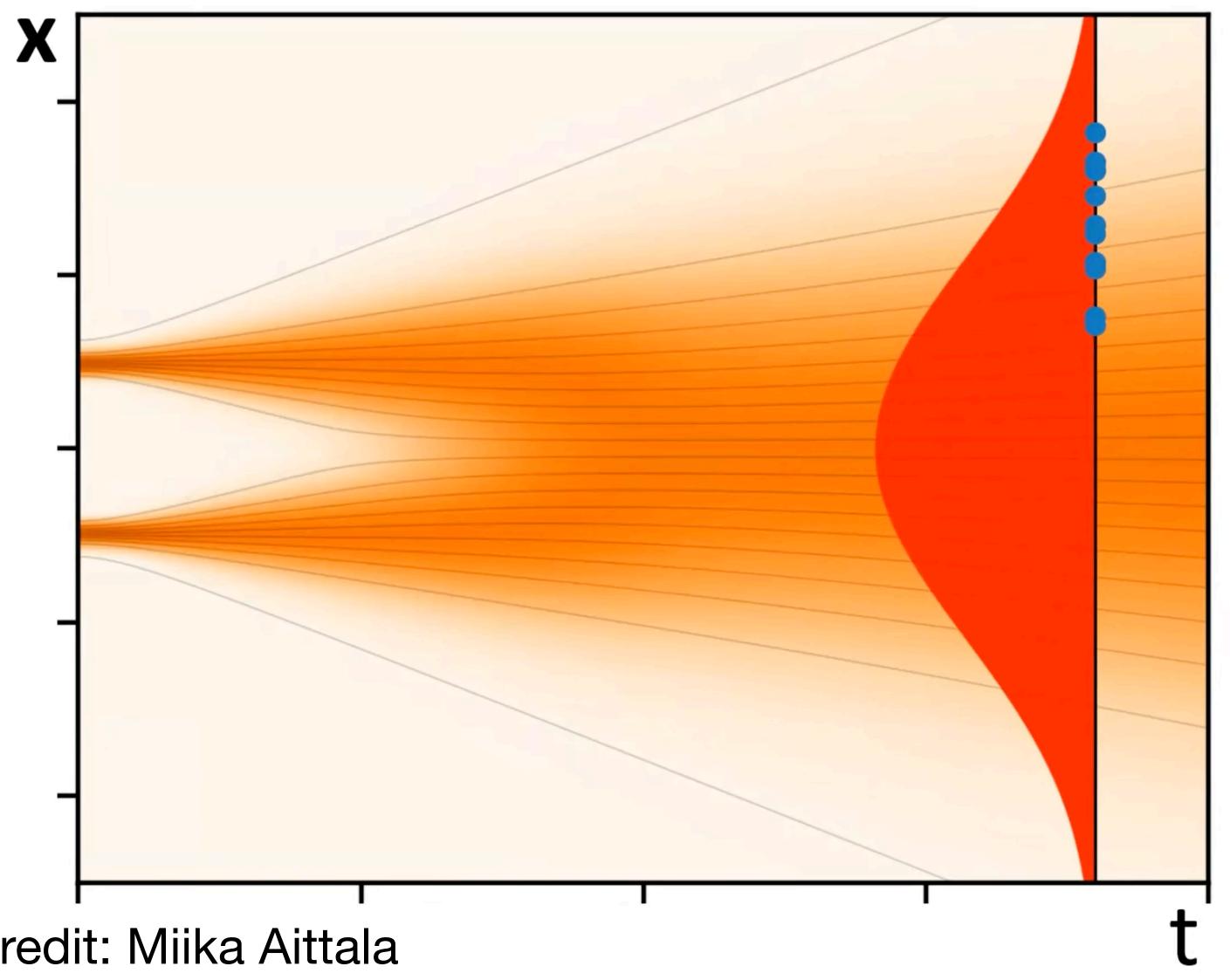




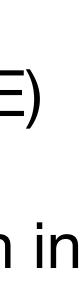
- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution in addition to reducing the noise.



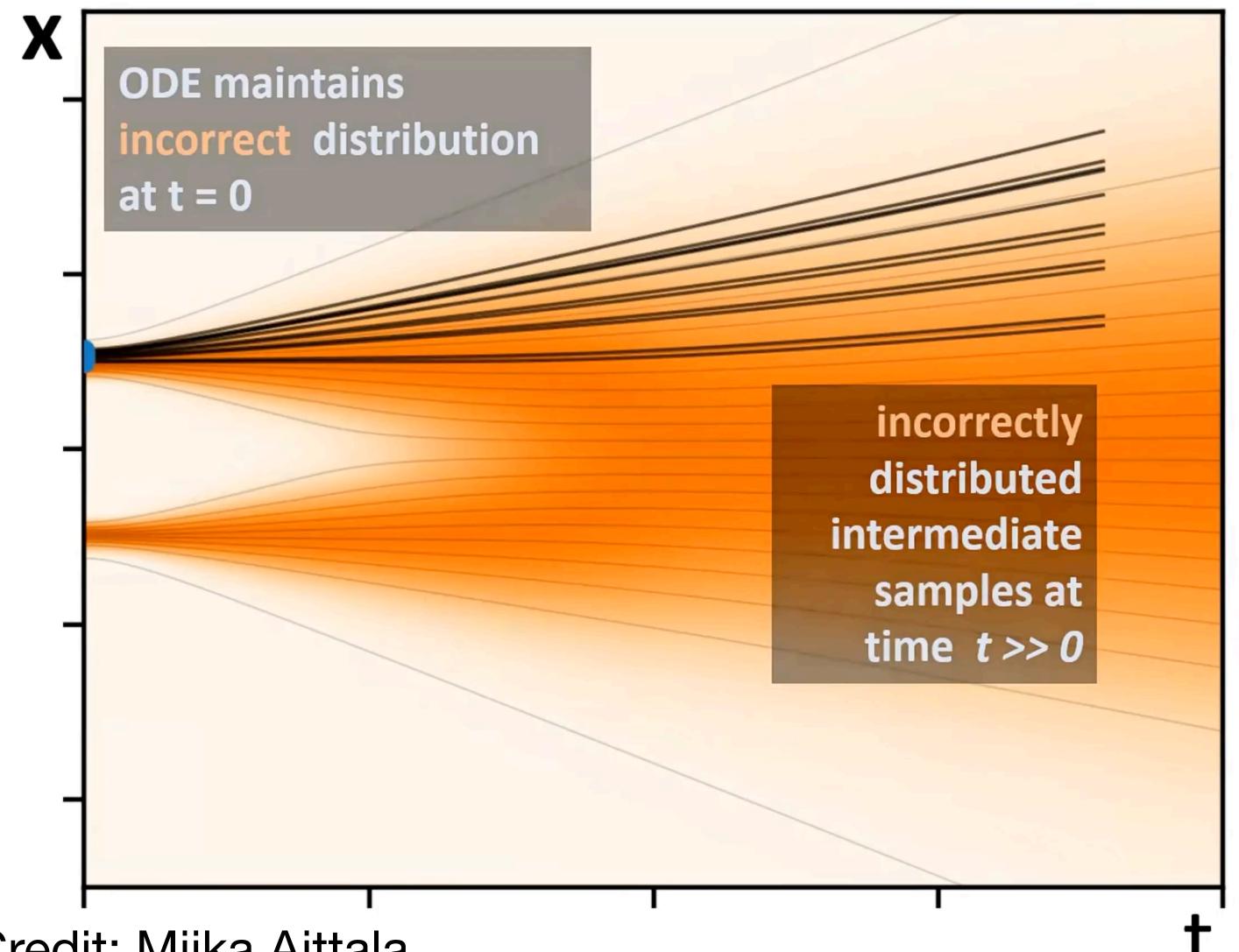
Stochastic Sampler Helps Explore the Distribution



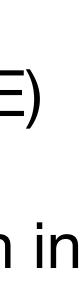
- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution in addition to reducing the noise.



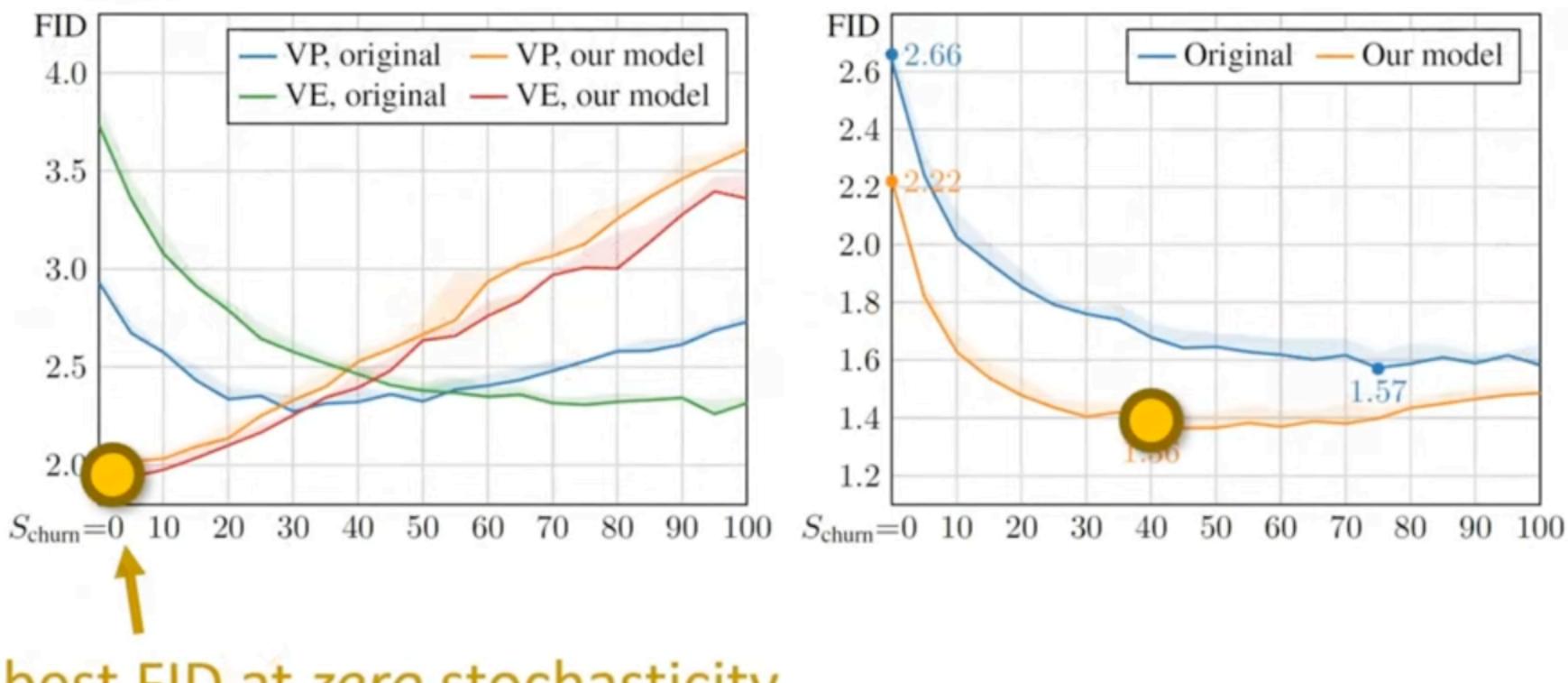
Stochastic Sampler Helps Explore the Distribution



- 1. Truncation error: fails to approximate ideal trajectory by finite steps.
- 2. Model fails to approximate the marginal flow.
 - 1. Stochastic sampler (SDE) injects fresh noise throughout the evolution in addition to reducing the noise.



Is stochasticity always helpful? CIFAR-10: no

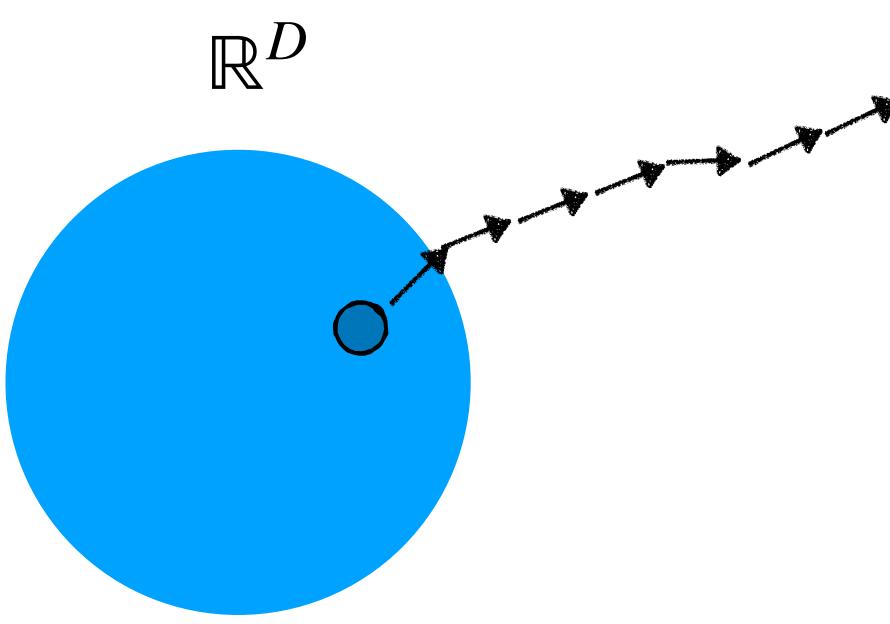


best FID at zero stochasticity

Credit: Miika Aittala

Imagenet: yes

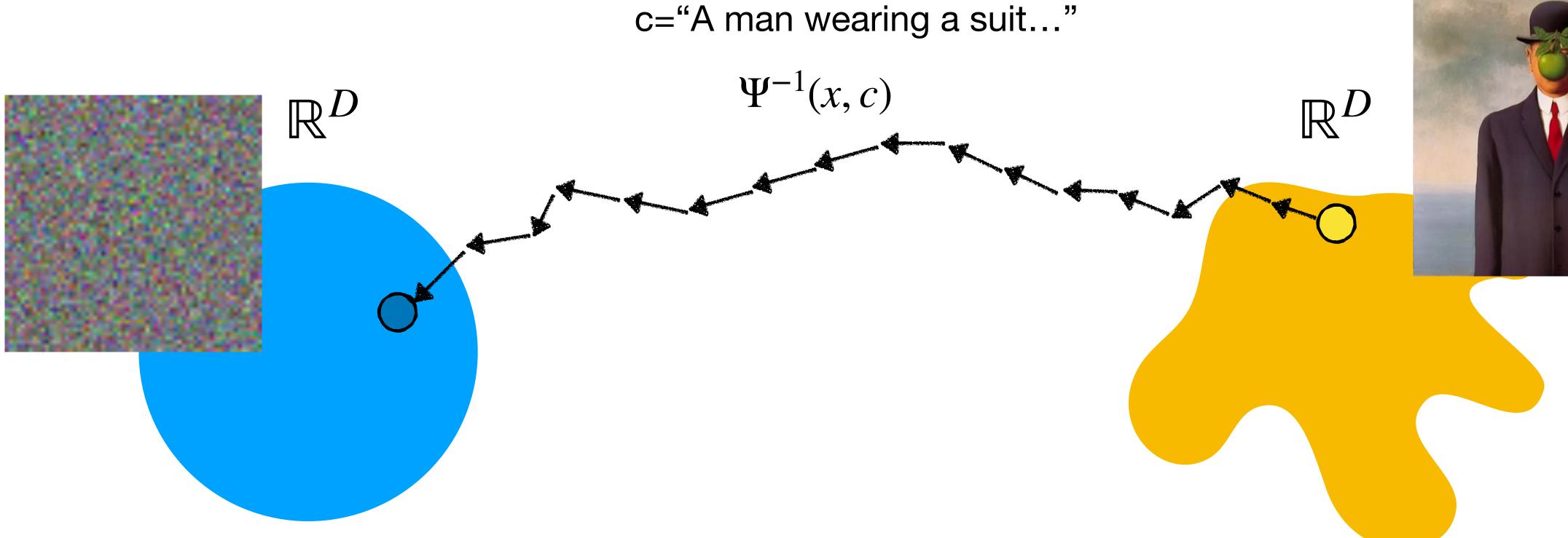
Image Generation by Solving the Flow ODE Ψ \mathbb{R}^{D} \mathbb{R}^{D}



*P*source

*P*target

Image Editing with Diffusion Inversion

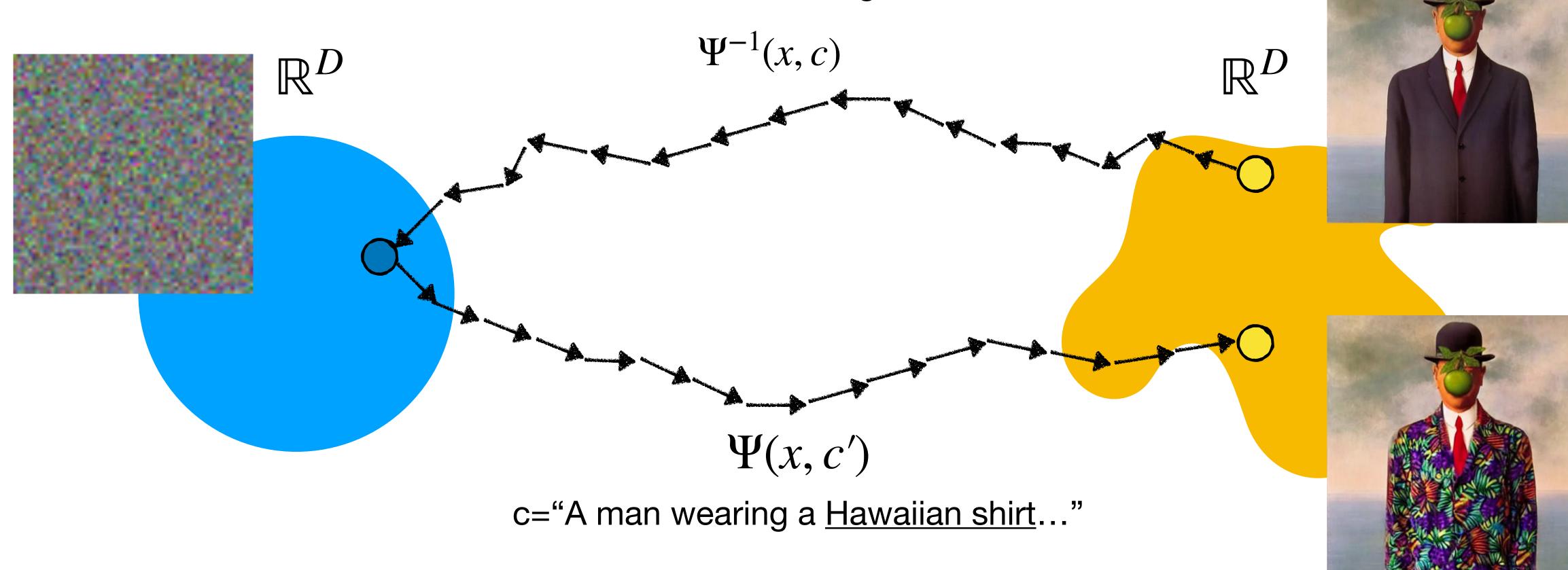


*P*source

*P*target

Image Editing with Diffusion Inversion

c="A man wearing a <u>suit</u>..."

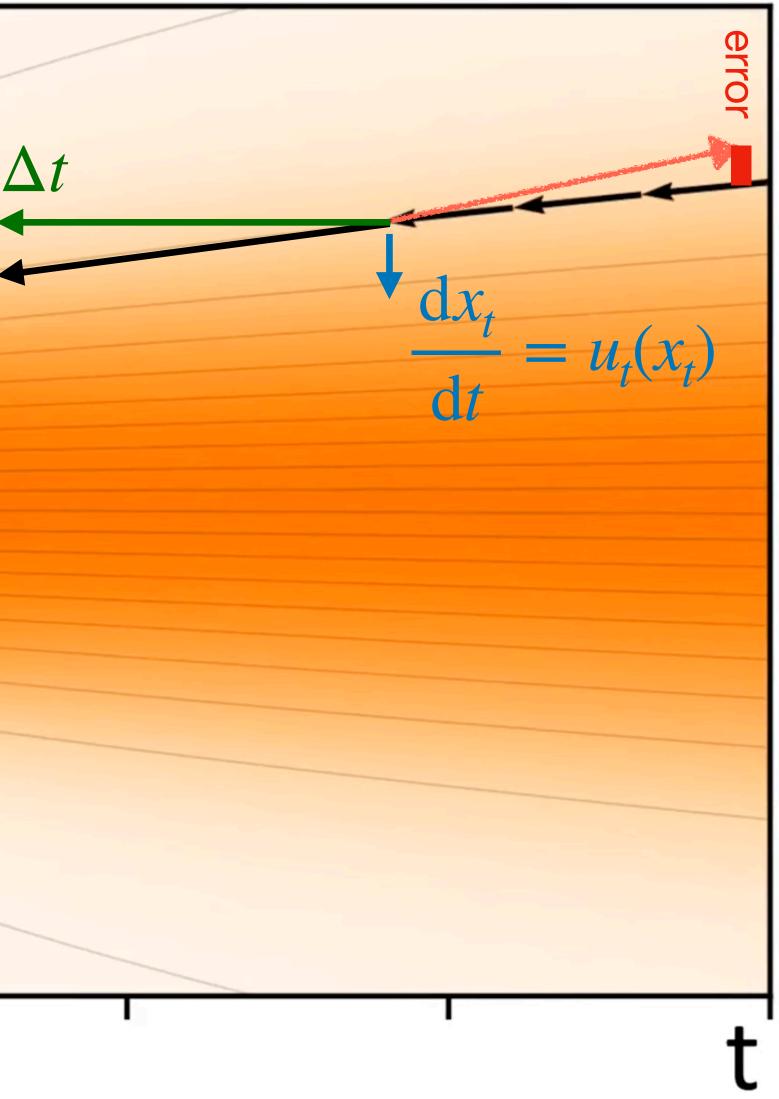


*P*_{source}

*P*target

Inverting a diffusion model is not easy

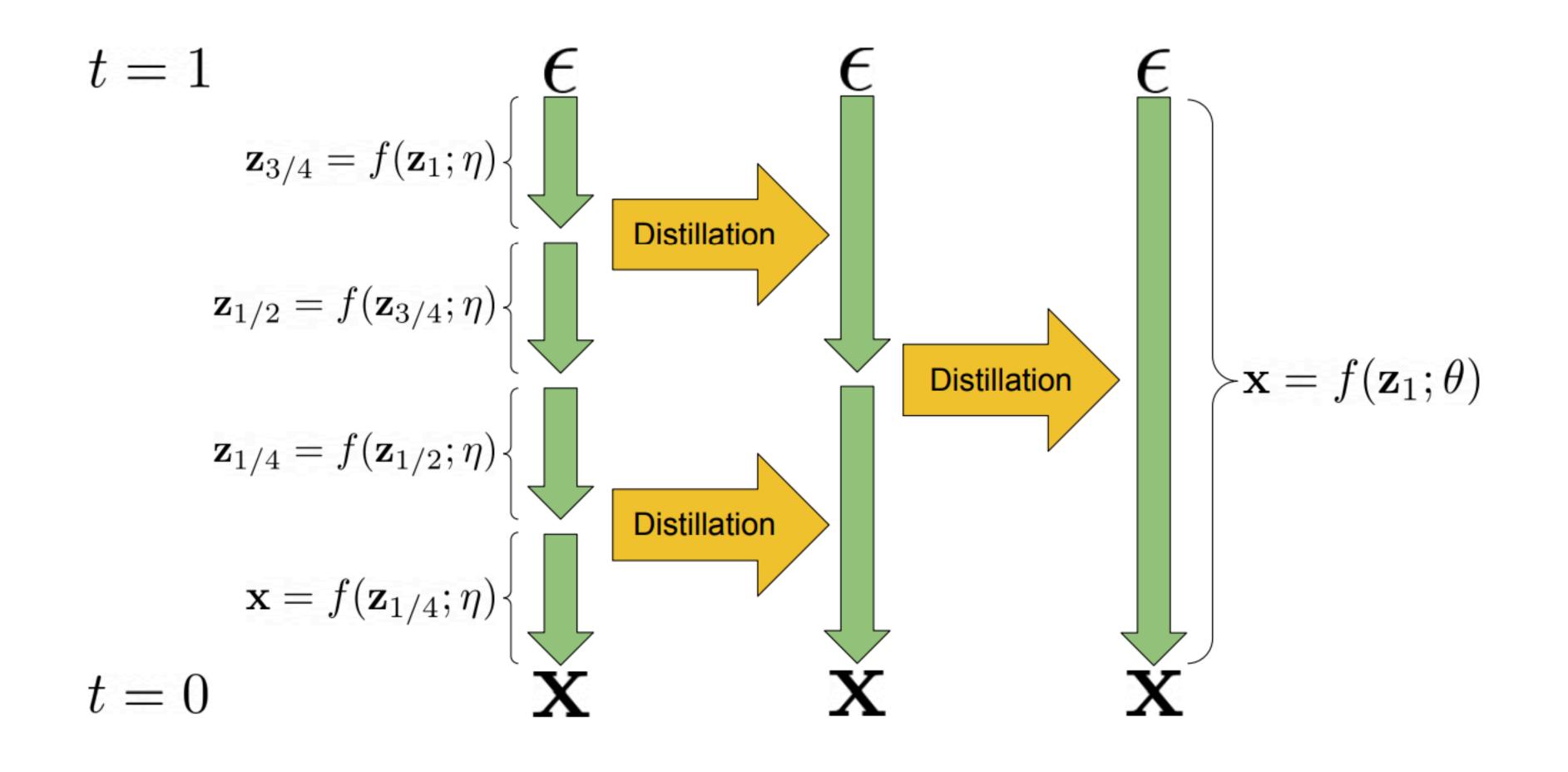
$$x_{t-\Delta t} = x_t - \Delta t \cdot \frac{dx}{dt} \Big|_{x_t, t}$$



Sampling is slow!

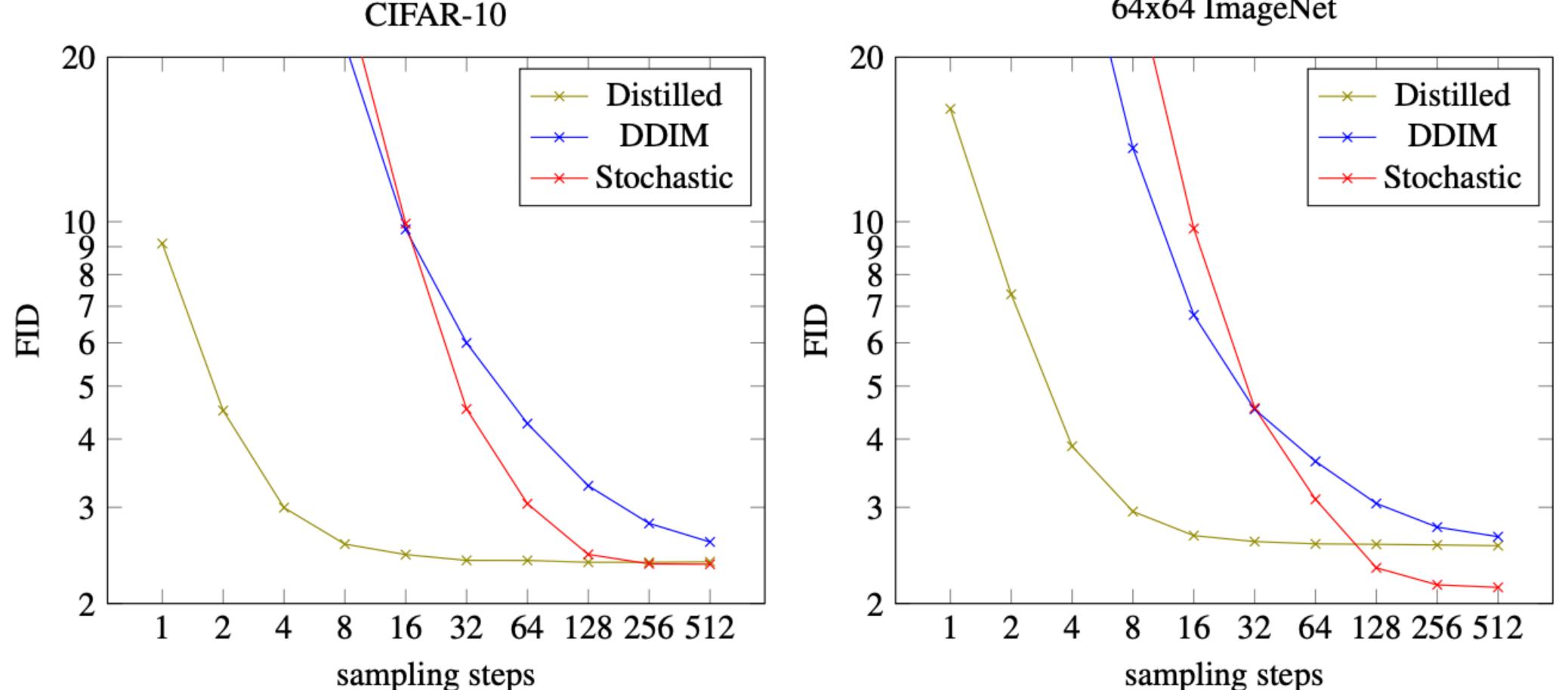
Generating a 3s HD video could take 15 minutes!

Progressive Distillation



Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models.

Progressive Distillation

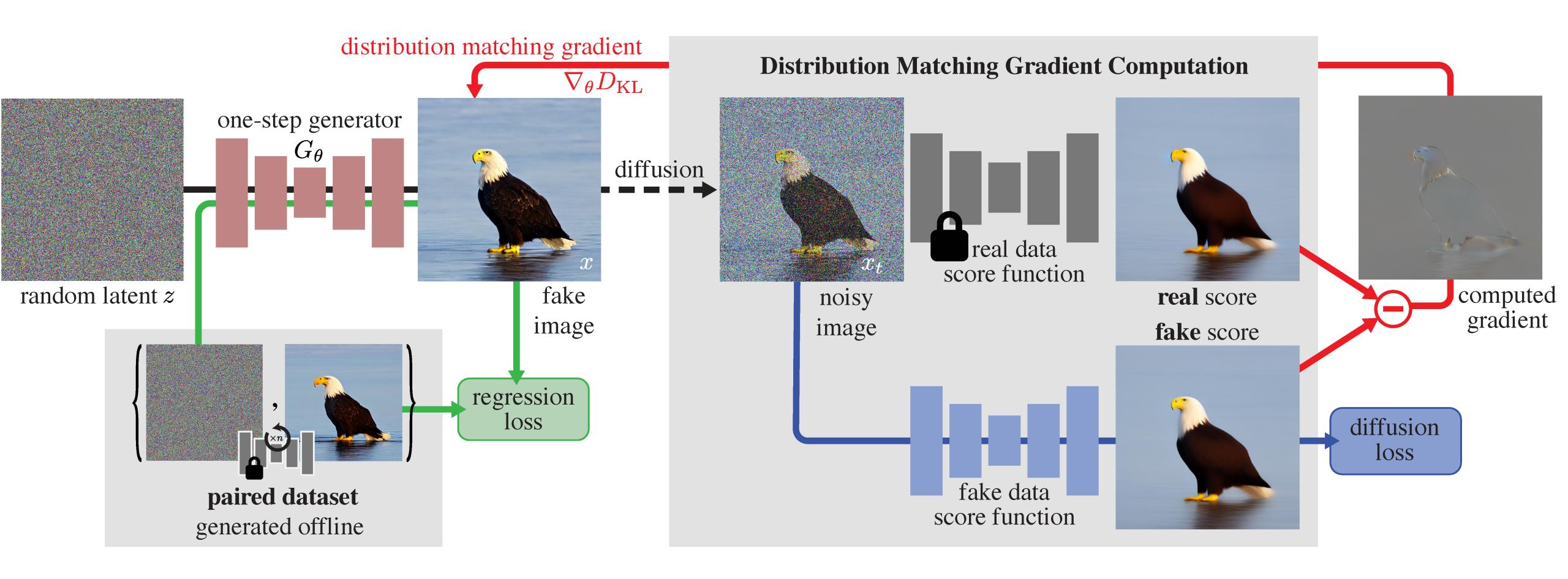


sampling steps

64x64 ImageNet

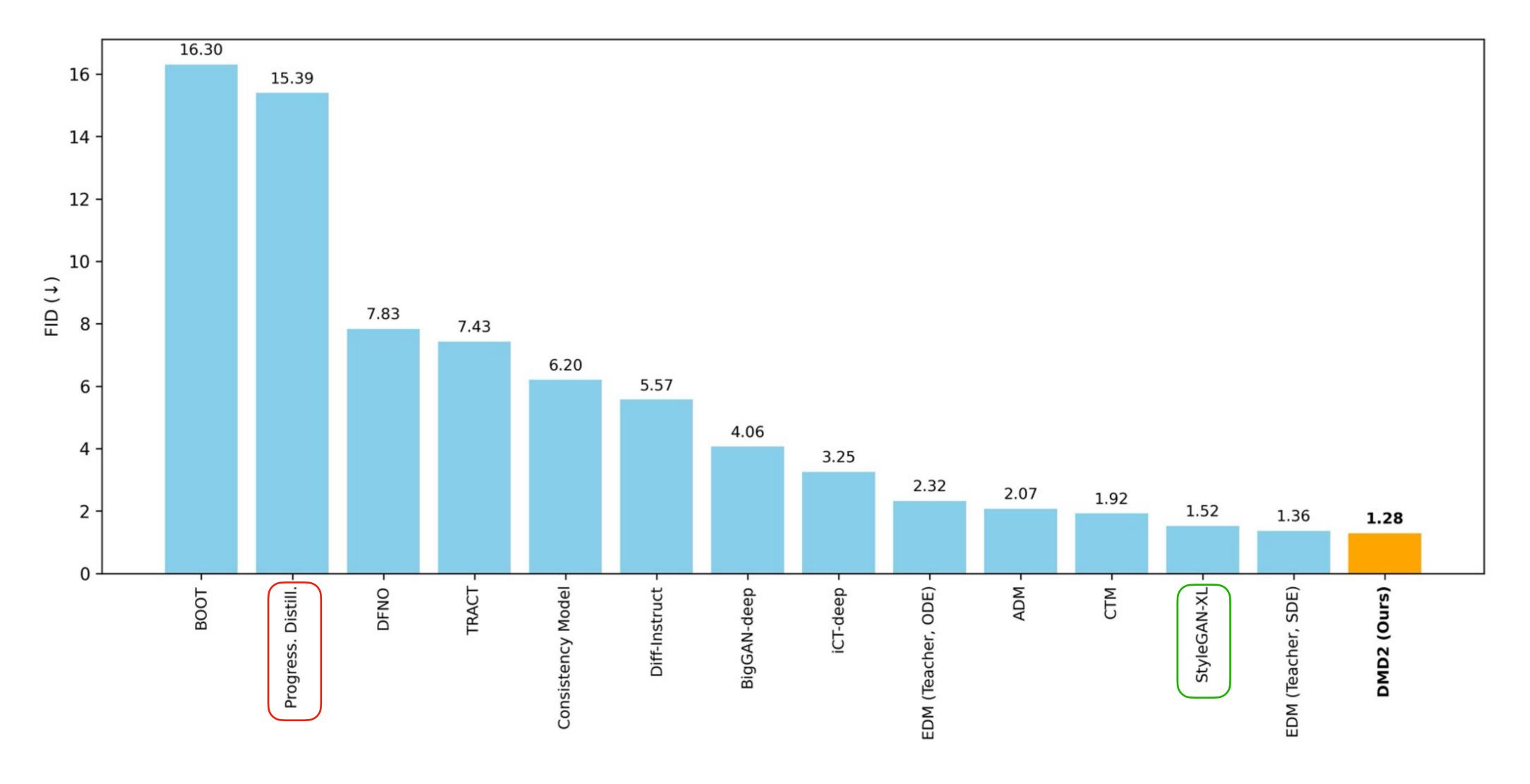
Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models.

Distribution Matching Distillation



Yin, Tianwei, et al. "One-step diffusion with distribution matching distillation."

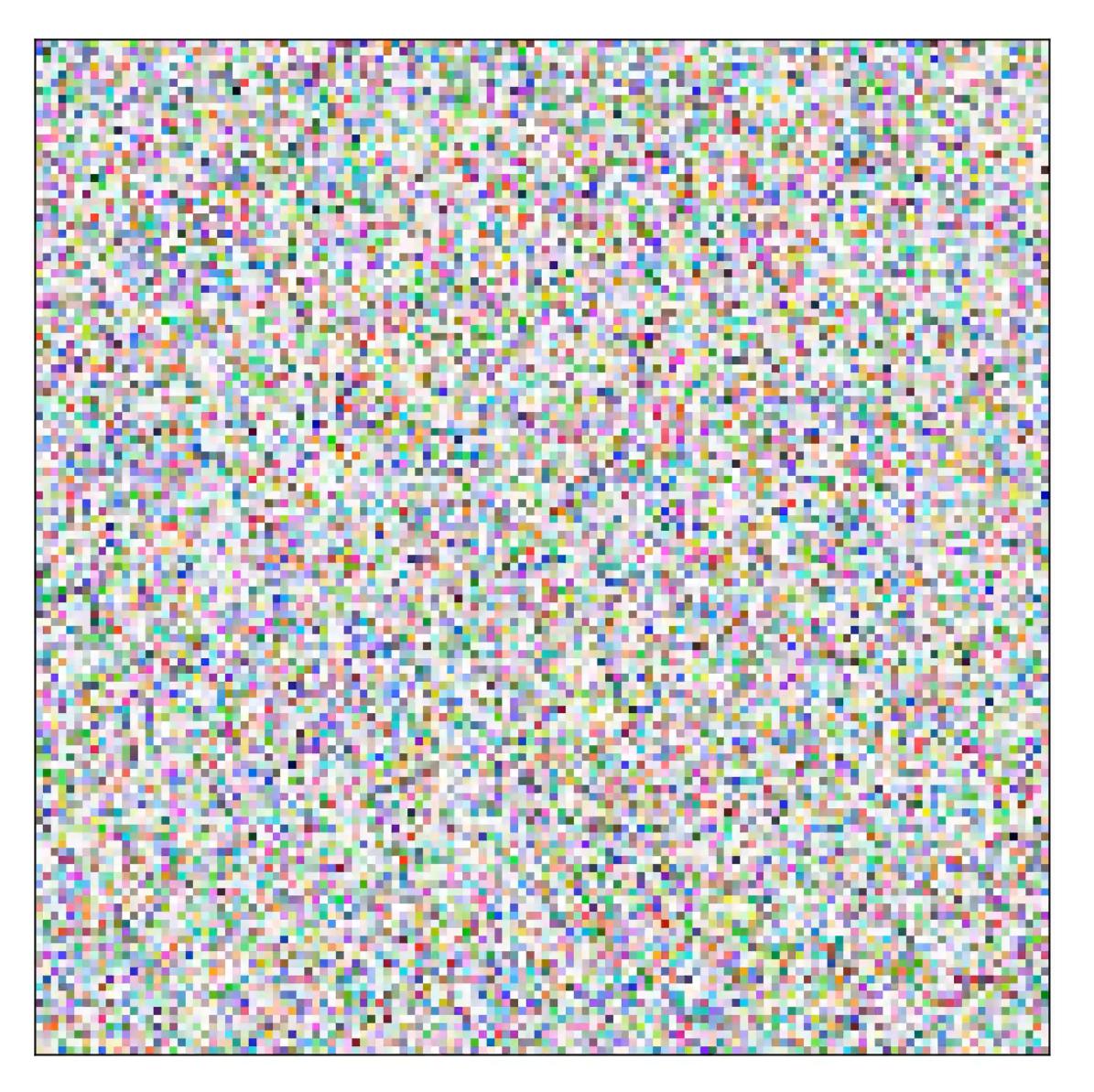
Distribution Matching Distillation



Yin, Tianwei, et al. "One-step diffusion with distribution matching distillation."

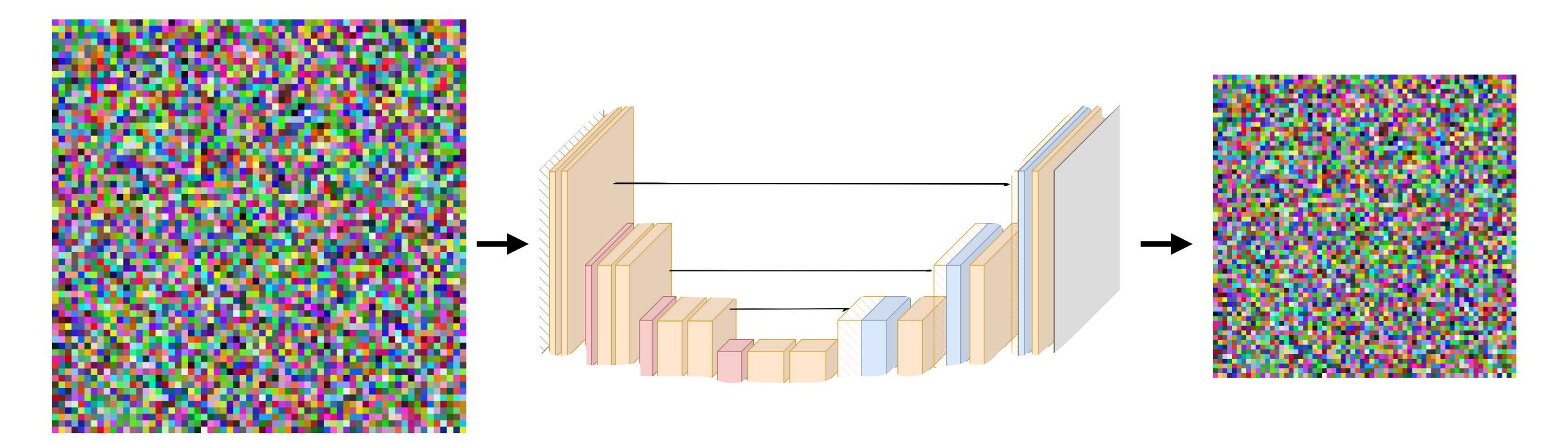
"beret of raspberries" **Conditioning & Guidance**

slide from Steve Seitz's video



raspberry beret

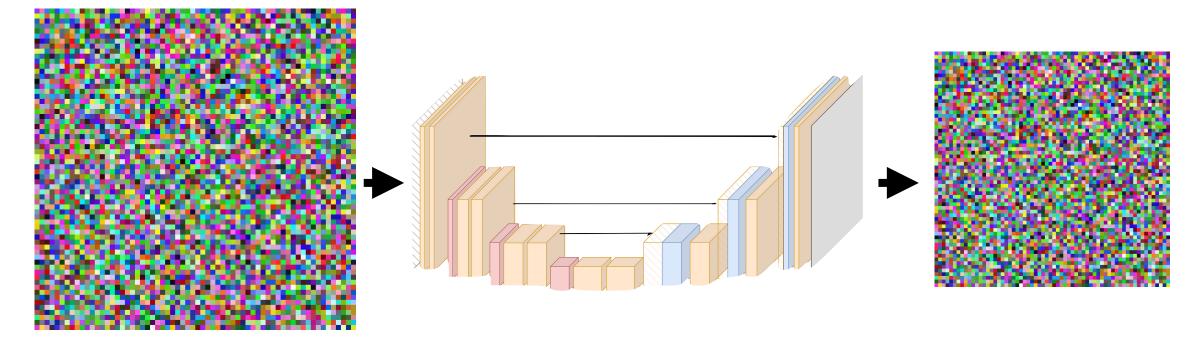
slide from Steve Seitz's video



 \mathbf{X}_t Noise Image

Denoiser

Prediction (Flow, Epsilon etc.)

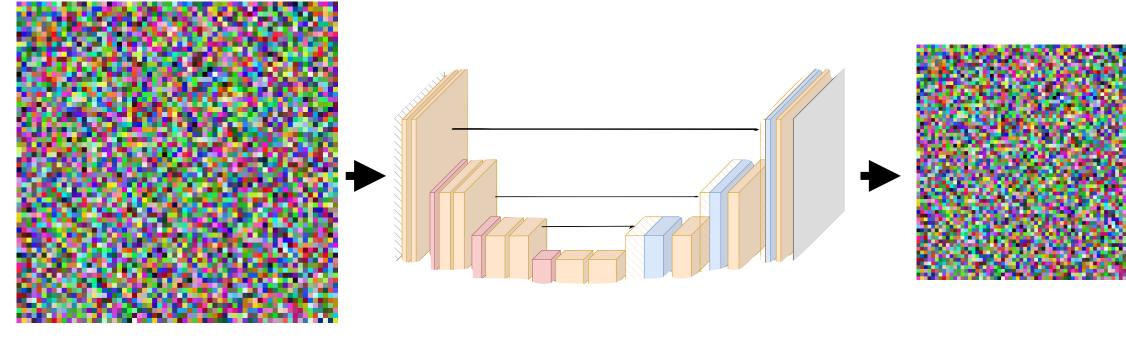


 \mathbf{X}_t Noise Image

Denoiser

Prediction

 \checkmark

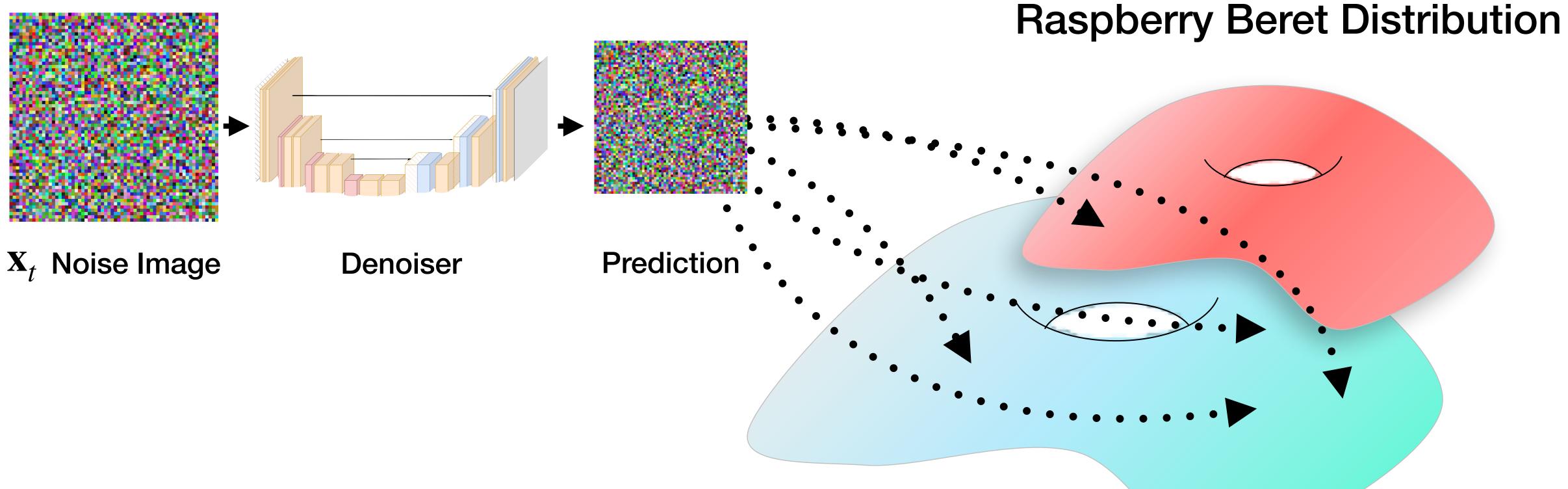


 \mathbf{X}_t Noise Image

Denoiser

Prediction

Raspberry Beret Distribution

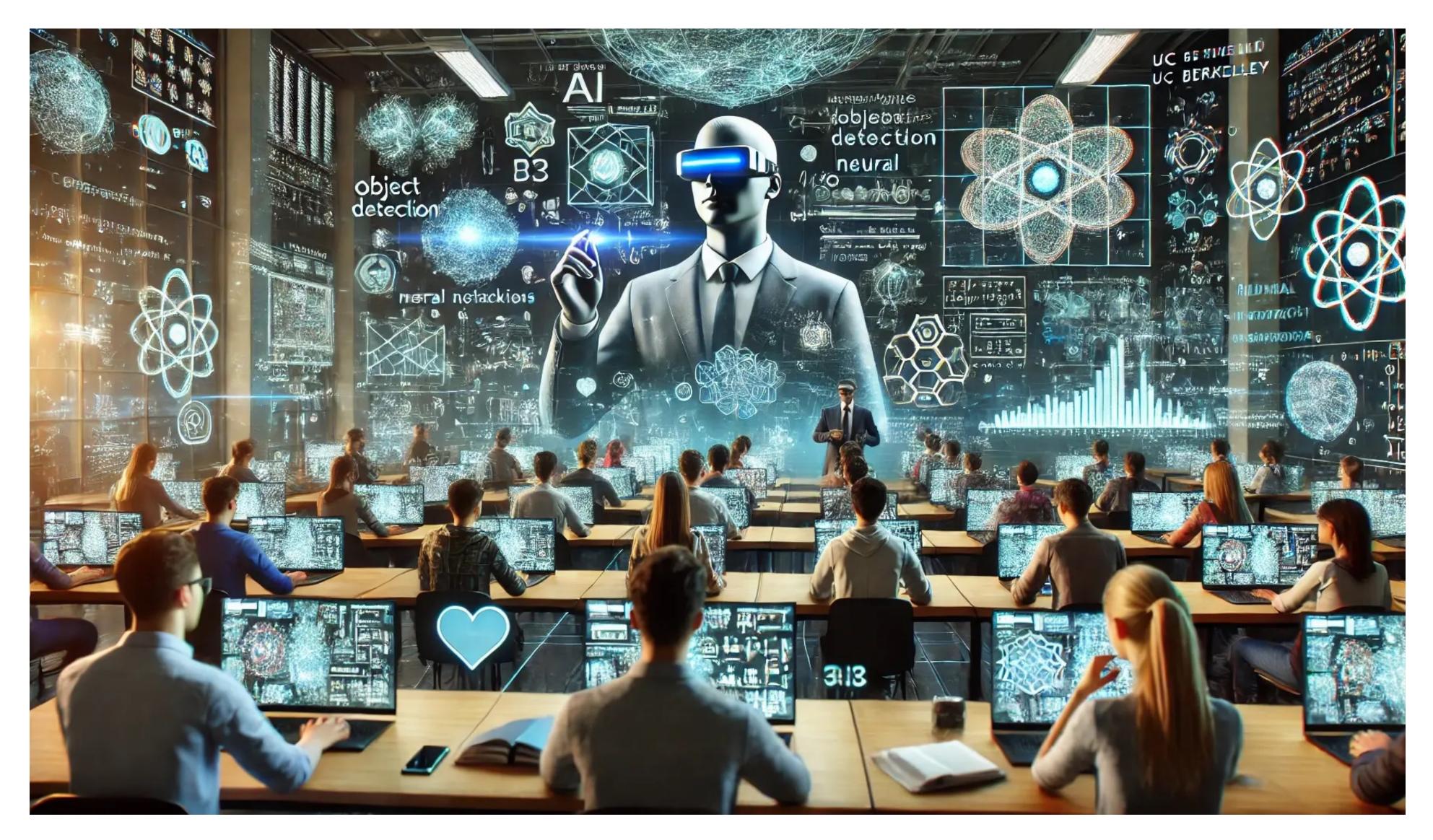


Unguided Diffusion Isn't Too Useful!

Flux Pro Unguided Samples Imitates Distribution of Internet Training Data

Flux Pro Guided Samples "beret of raspberries"

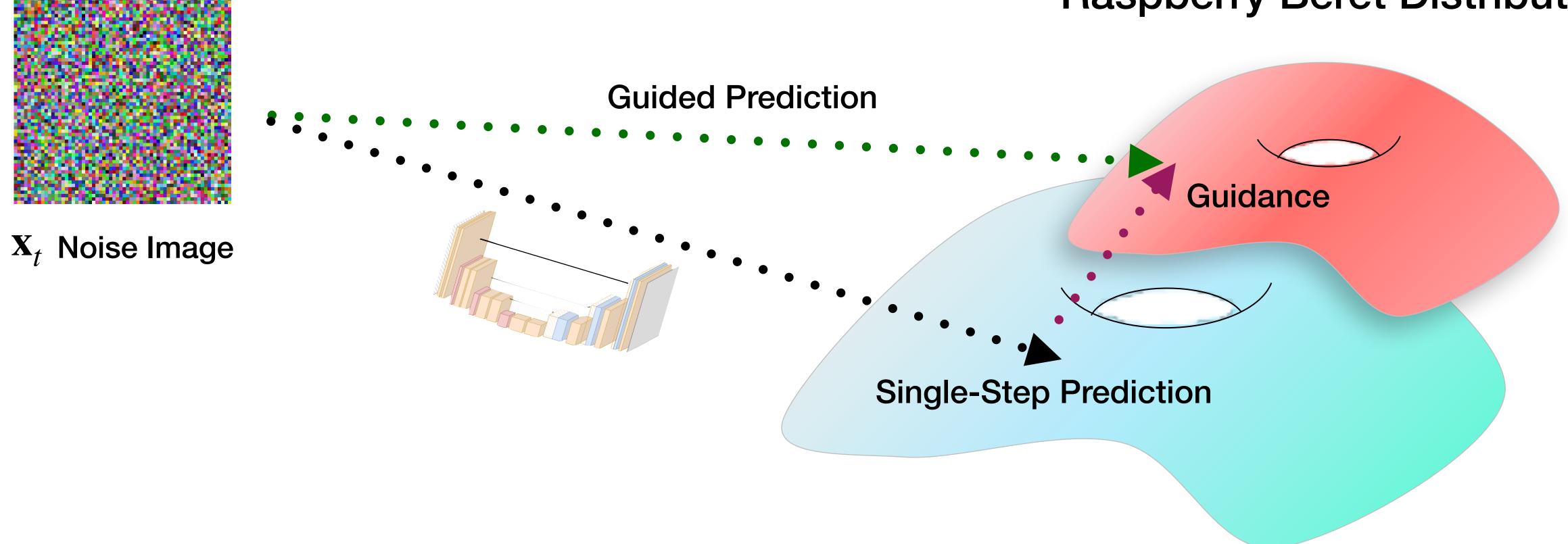
Generate a photo of a Berkeley computer vision class



Make it more epic

Make it THE MOST EPIC computer vision class that you can ever think of

Diffusion Guidance Push Toward a Conditional Mode



How do we do this?

Raspberry Beret Distribution

Original Classifier Guidance

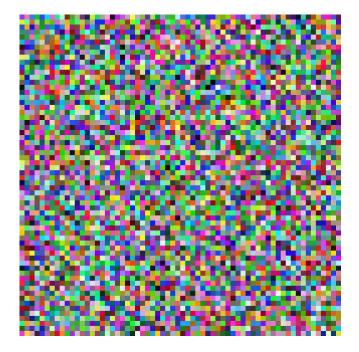
Guide with a pretrained classifier.

Two Approaches

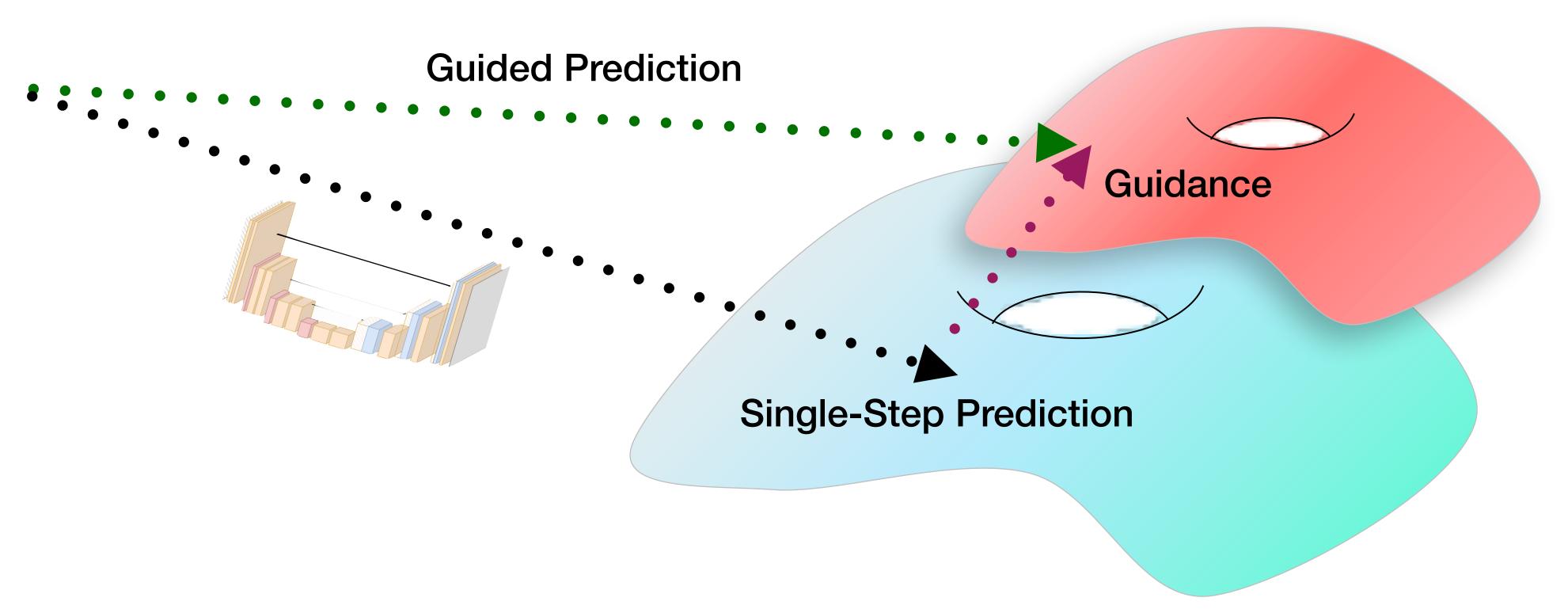
Current **Classifier-Free** Guidance

Guide a diffusion model with itself.

Diffusion Guidance Push Toward a Conditional Mode

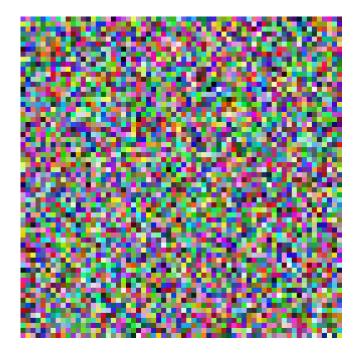


 \mathbf{X}_t Noise Image

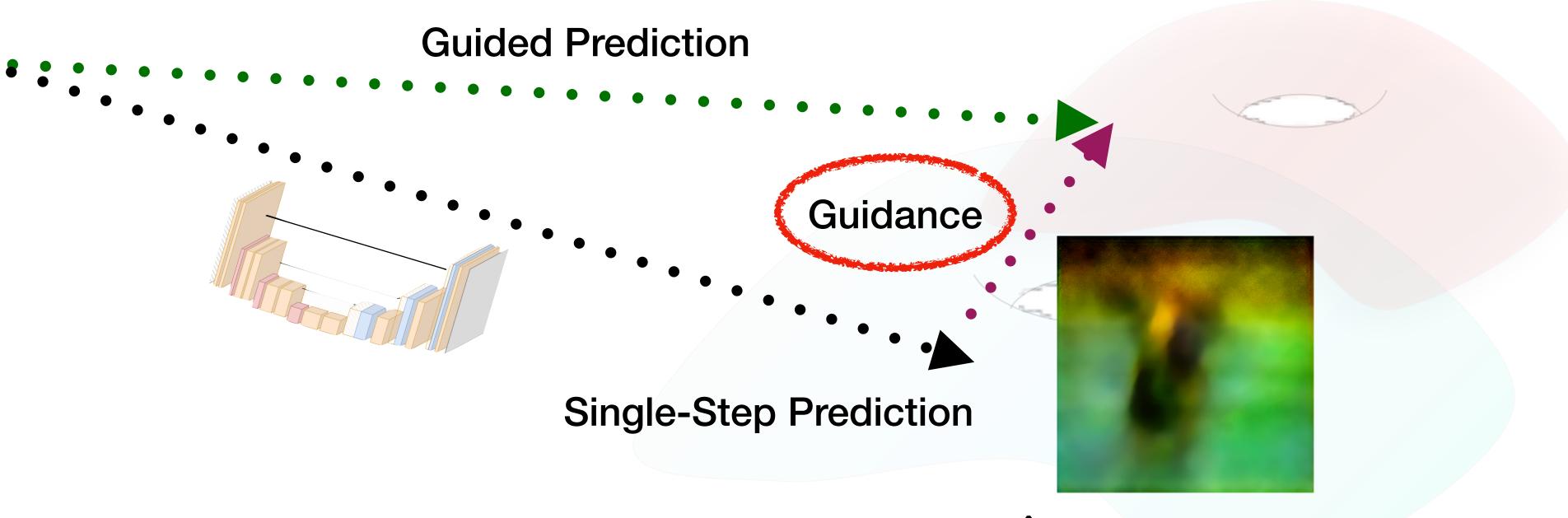


Raspberry Beret Distribution

Classifier Guidance Using a Pretrained Classifier



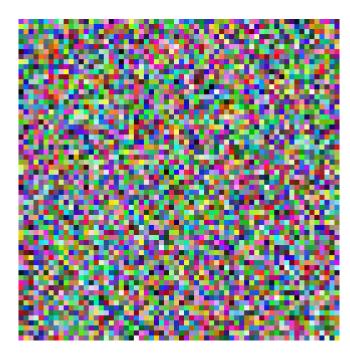
 \mathbf{X}_t Noise Image

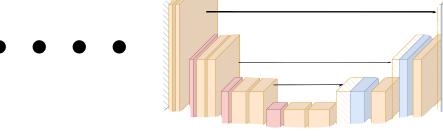


Raspberry Beret Distribution

Image Prediction \mathbf{X}_1

Classifier Guidance Using a Pretrained Classifier





Diffusion Model

 \mathbf{X}_t Noise Image

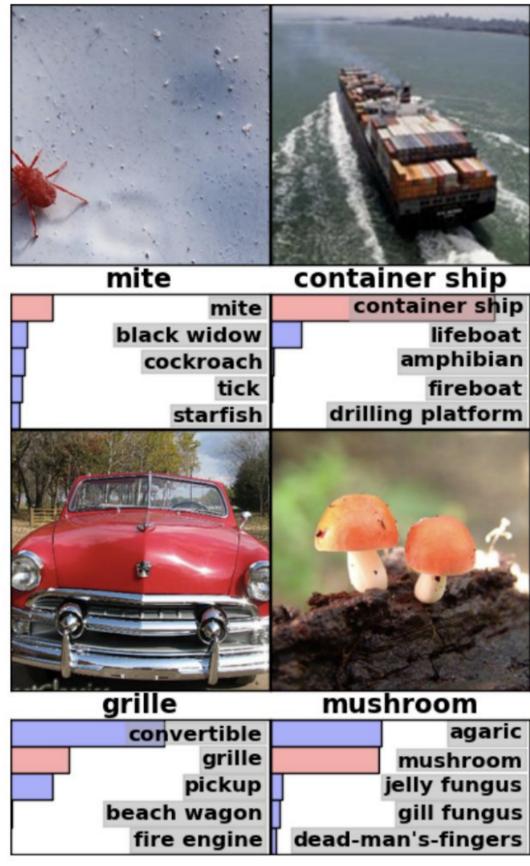
Raspberry Beret Distribution

$\nabla \log p(\hat{x}_0 \,|\, c)$

Gradient from Classifier

$\hat{\mathbf{x}}_1$ Image Prediction

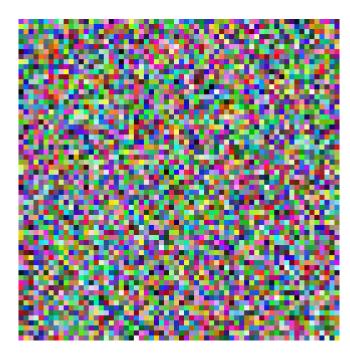
For Example...

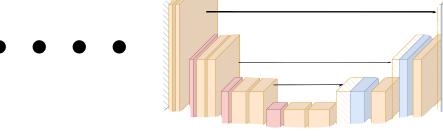


ship	motor scooter	leopard
er ship		leopard
	motor scooter	
eboat	go-kart	jaguar
hibian	moped	cheetah
eboat	bumper car	snow leopard
atform	golfcart	Egyptian cat
1 A		
	and an an and	State of the second
m	cherry	Madagascar cat
agaric	dalmatian	squirrel monkey
hroom	grape	spider monkey
ungus	elderberry	titi
ungus	ffordshire bullterrier	indri
ingers	currant	howler monkey

IM GENET

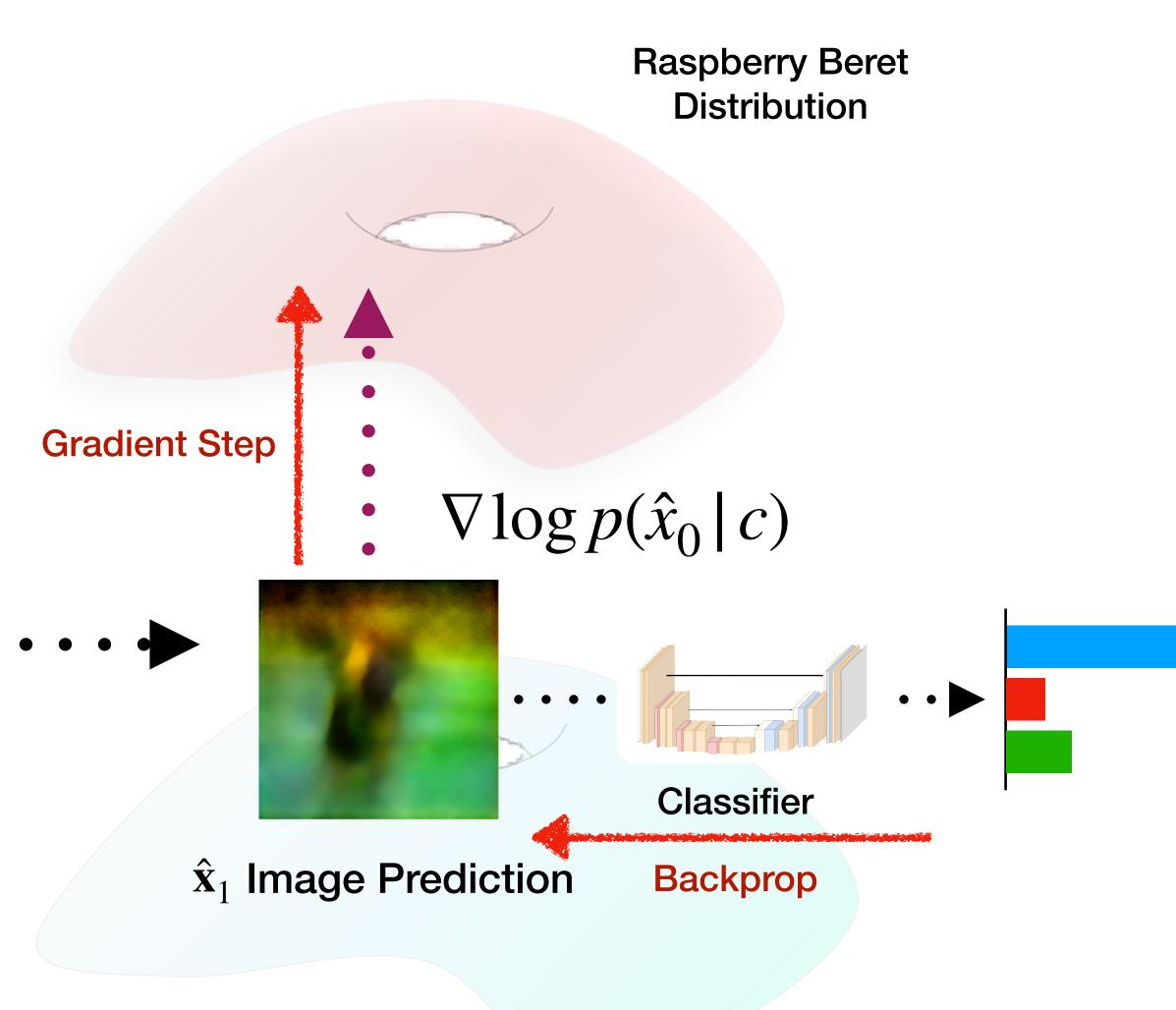
Classifier Guidance Using a Pretrained Classifier



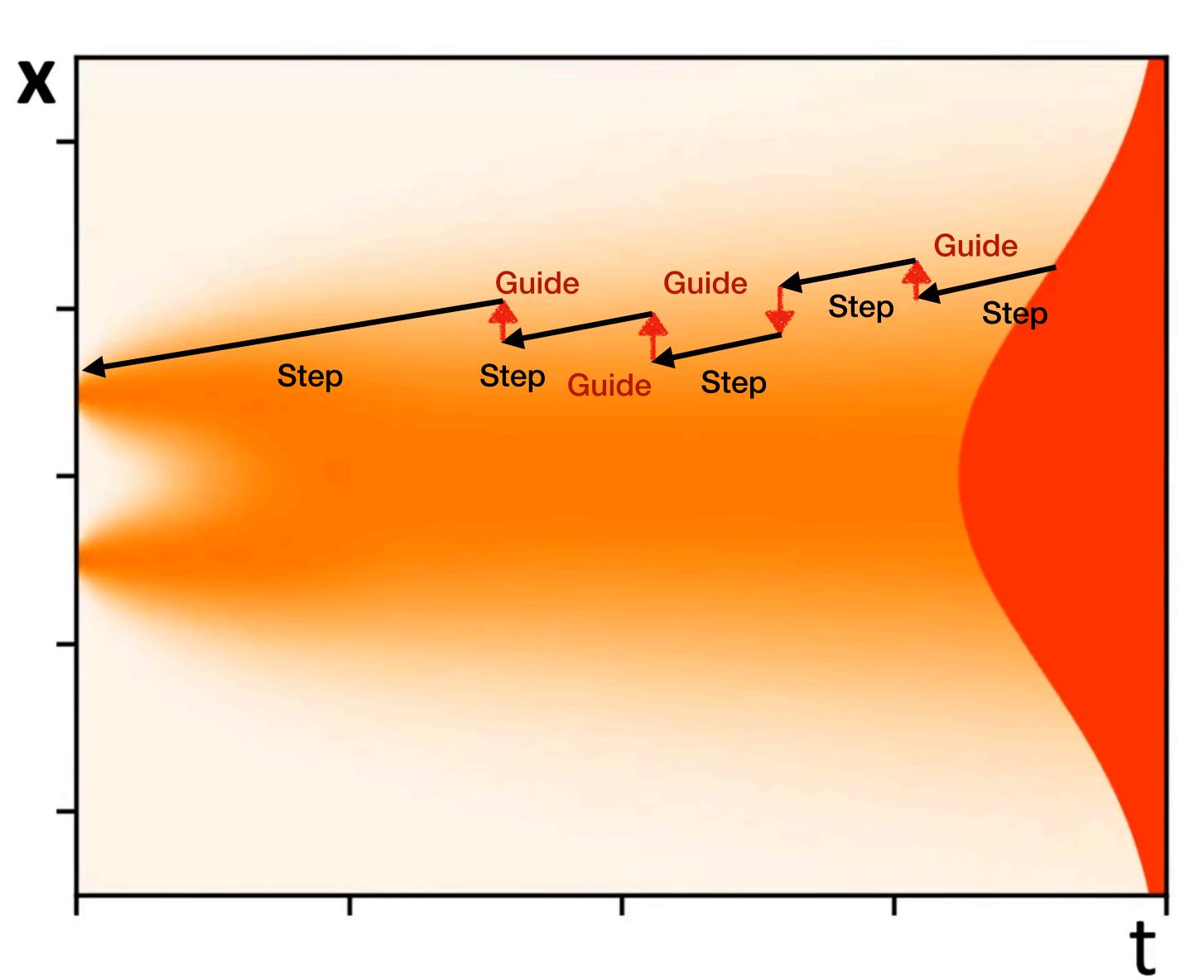


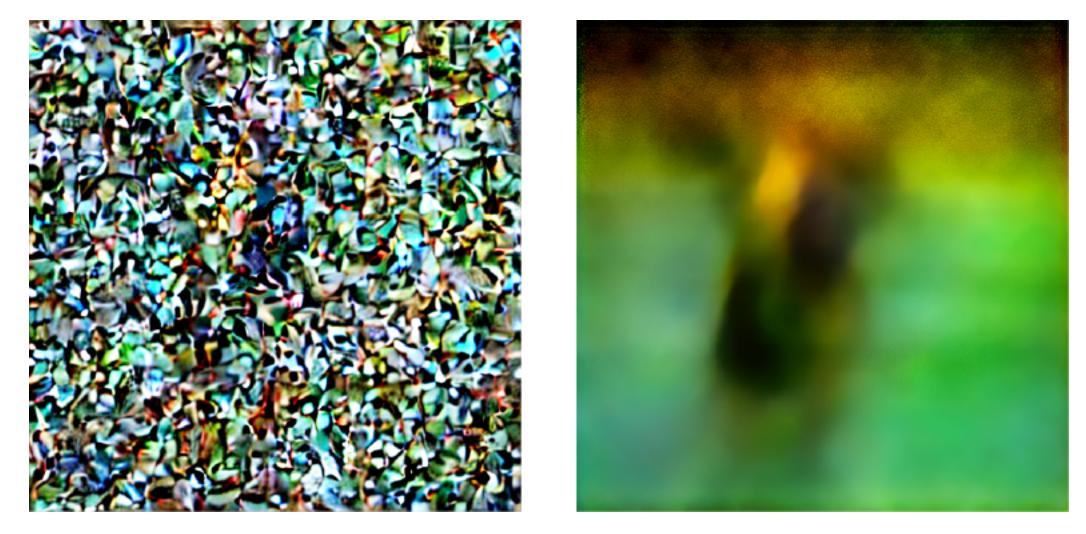
Diffusion Model

 \mathbf{X}_t Noise Image

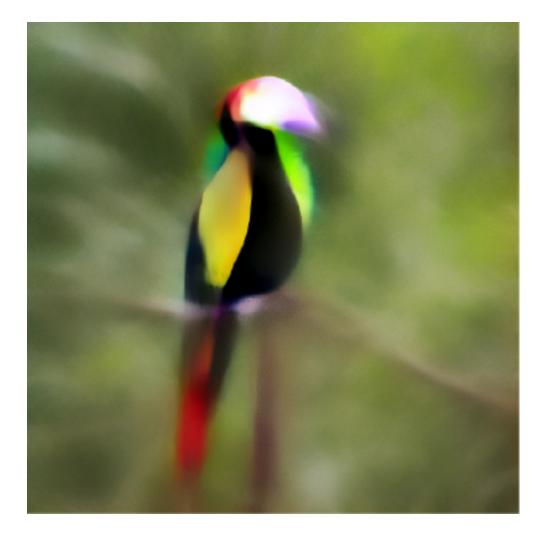


Sampling ODE View



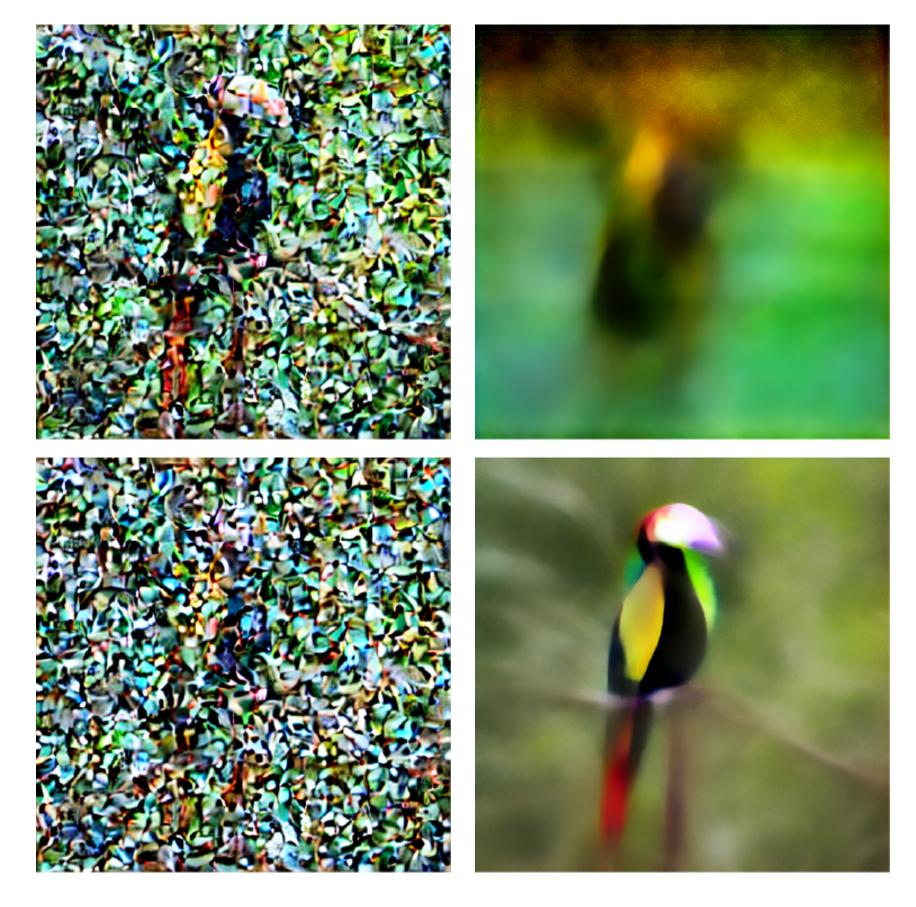


Classify These Images!



Classifier Guidance Pathologies Intermediate Diffusion Steps are O.O.D. for Classifier

ImageNet Training Data



 \mathbf{X}_t Noise Image

 $\hat{\boldsymbol{x}}_1$ Image Prediction

Original Classifier Guidance

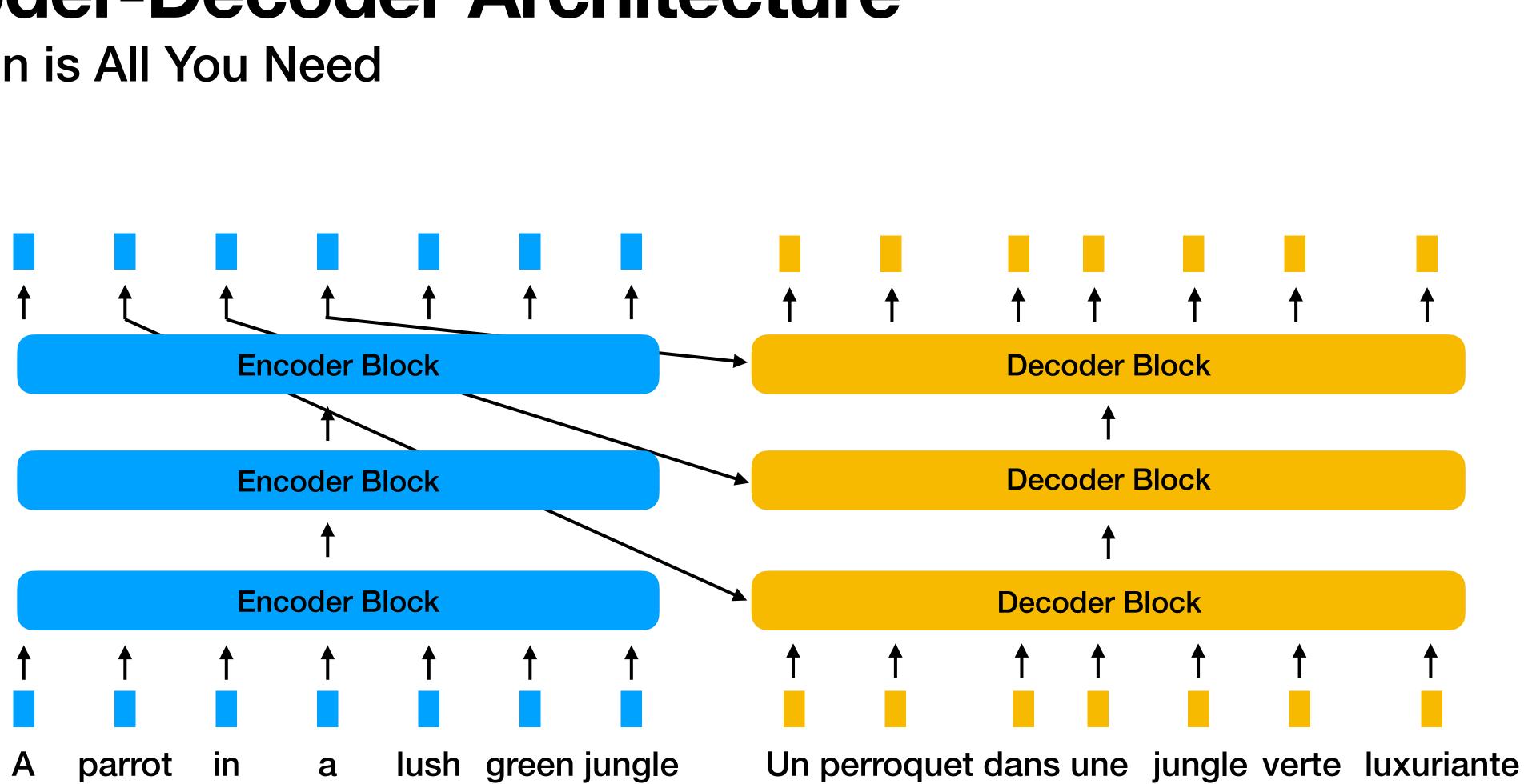
Guide with a pretrained classifier.

Two Approaches

Current **Classifier-Free** Guidance

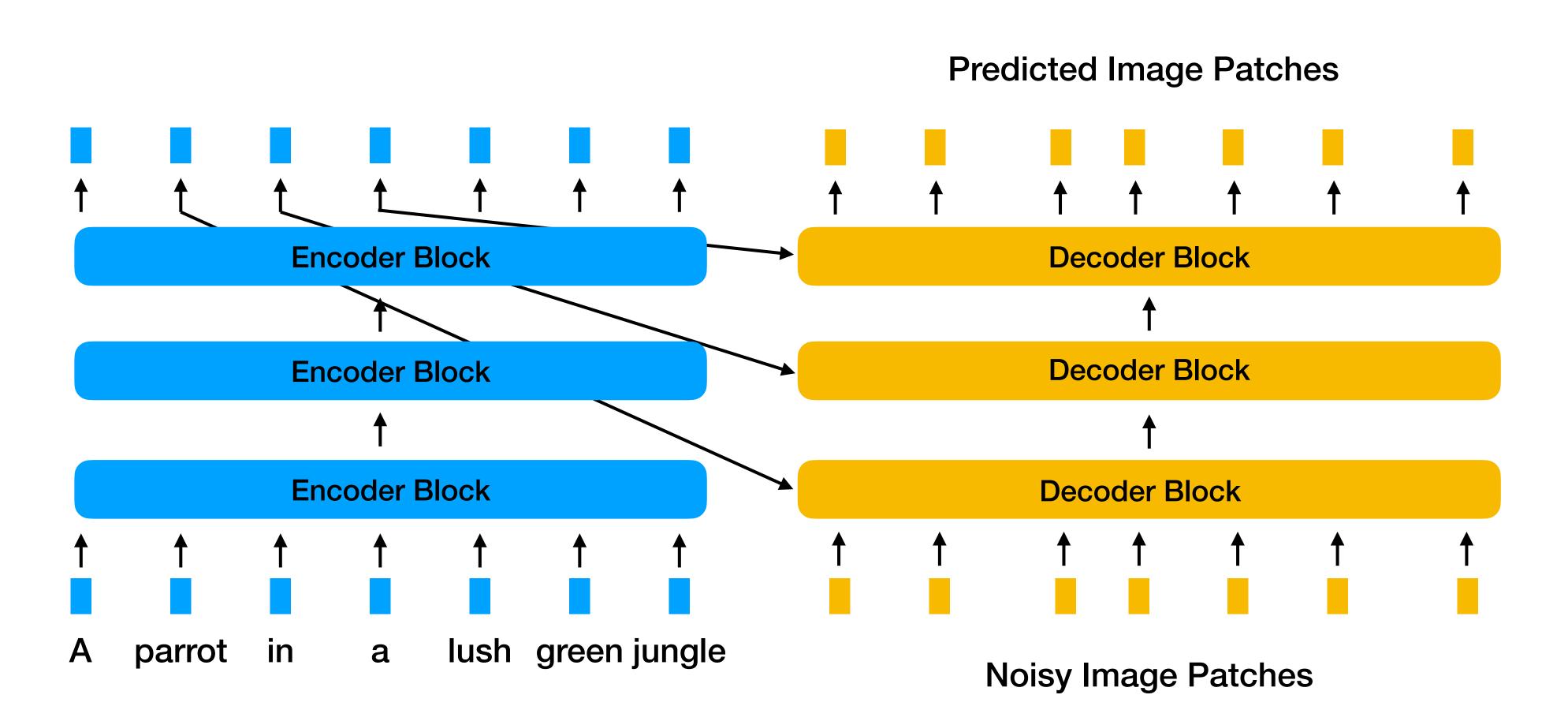
Guide a diffusion model with itself.

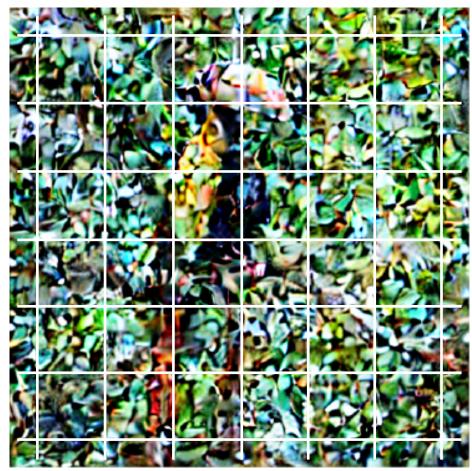
Encoder-Decoder Architecture Attention is All You Need



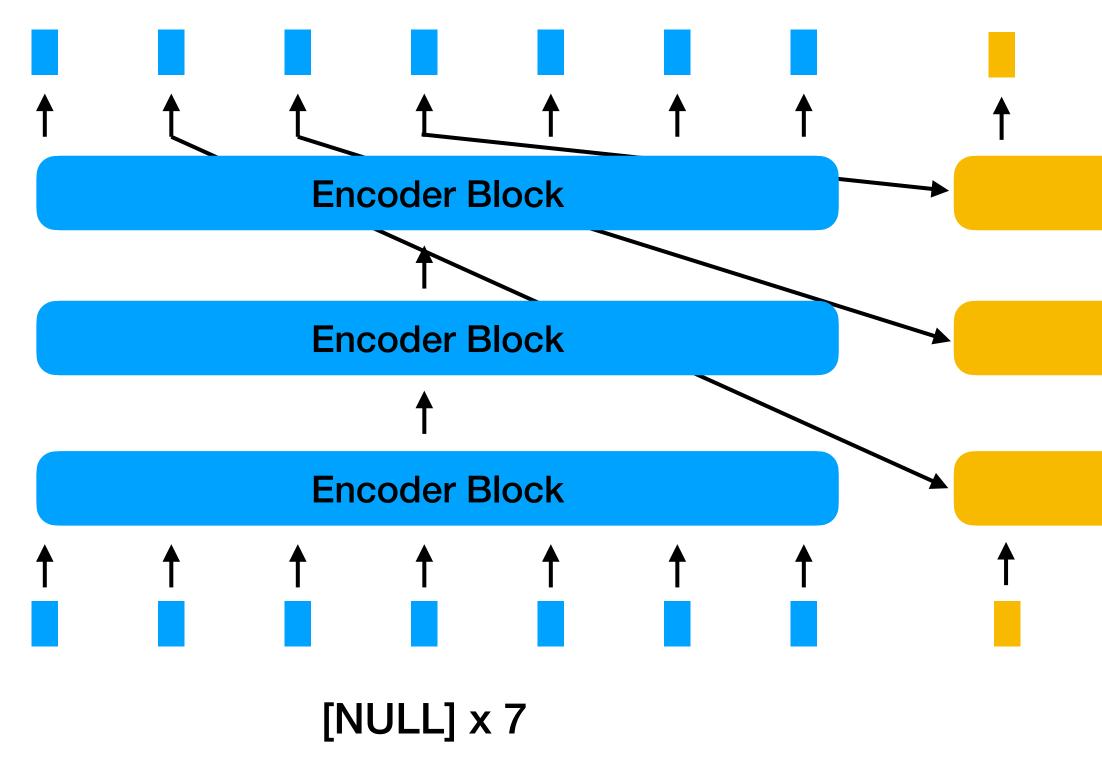
Adapted from HuggingFace Transformers-based Encoder-Decoder Models

Diffusion Transformer Architecture DiT, PixArt Alpha, MMDiT, etc.





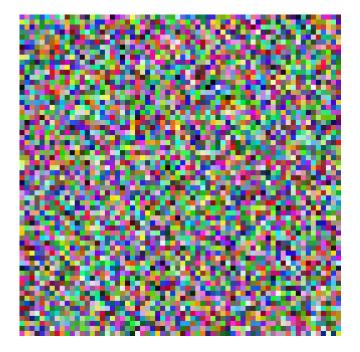
Dropout Conditioning Maybe 30% of Training Samples



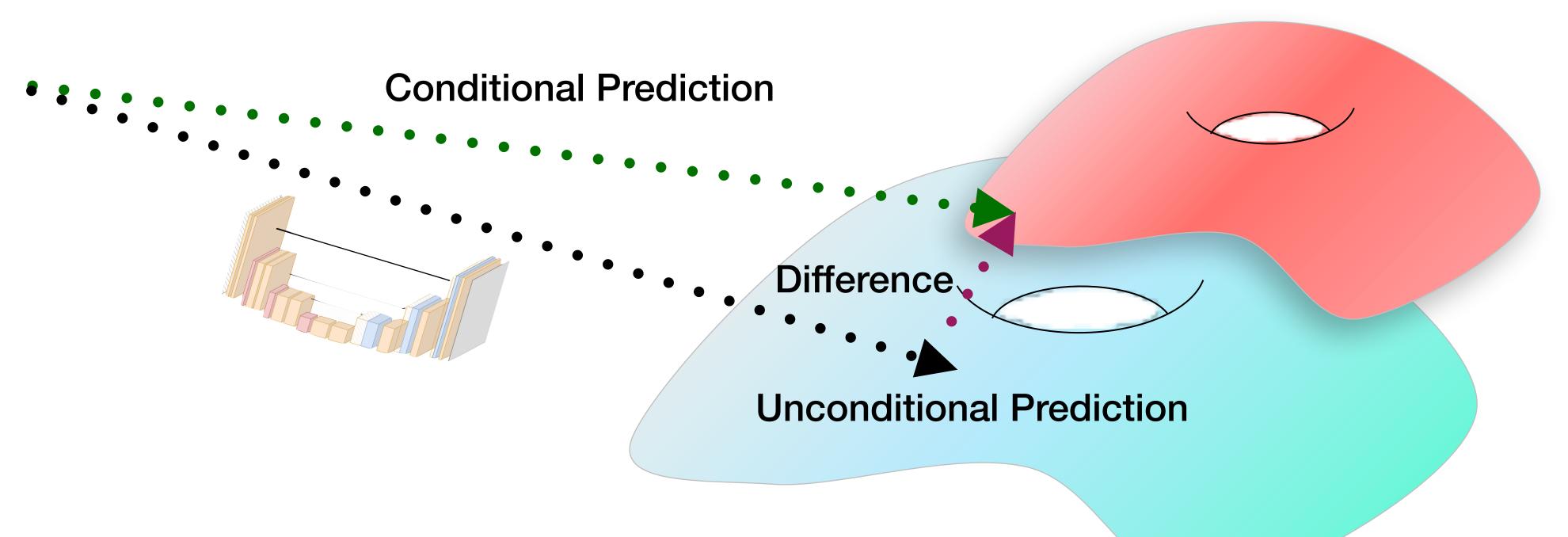
Predicted Image Patches Decoder Block Decoder Block Decoder Block Noisy Image Patches



Conditional Diffusion Model Knows Unconditional, Text-Conditioned Distributions

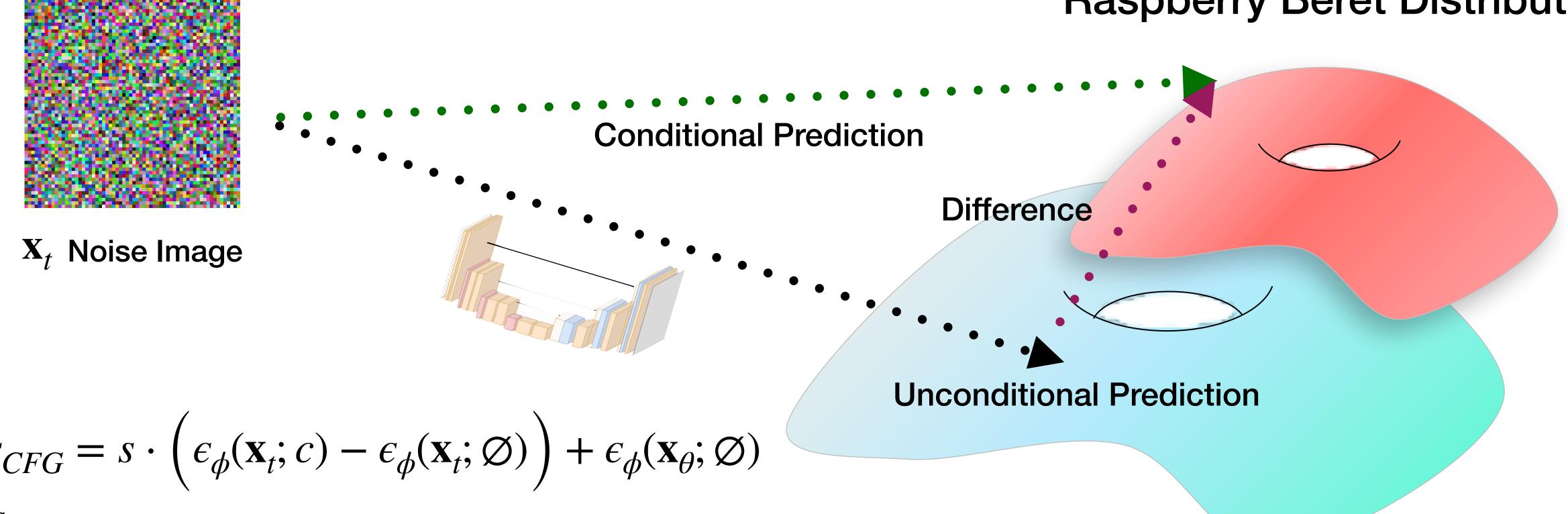


 \mathbf{X}_t Noise Image



Raspberry Beret Distribution

Classifier-Free Guidance Model Knows Unconditional, Text-Conditioned Distributions



$$\epsilon_{CFG} = s \cdot \left(\epsilon_{\phi}(\mathbf{x}_{t}; c) - \epsilon_{\phi}(\mathbf{x}_{t}; \emptyset) \right) + \epsilon_{\phi}(\mathbf{x}_{\theta}; \emptyset)$$

- ϵ_{ϕ} **Predicted Noise**
- \emptyset Null Prompt
- Target Prompt
- CFG Scale S

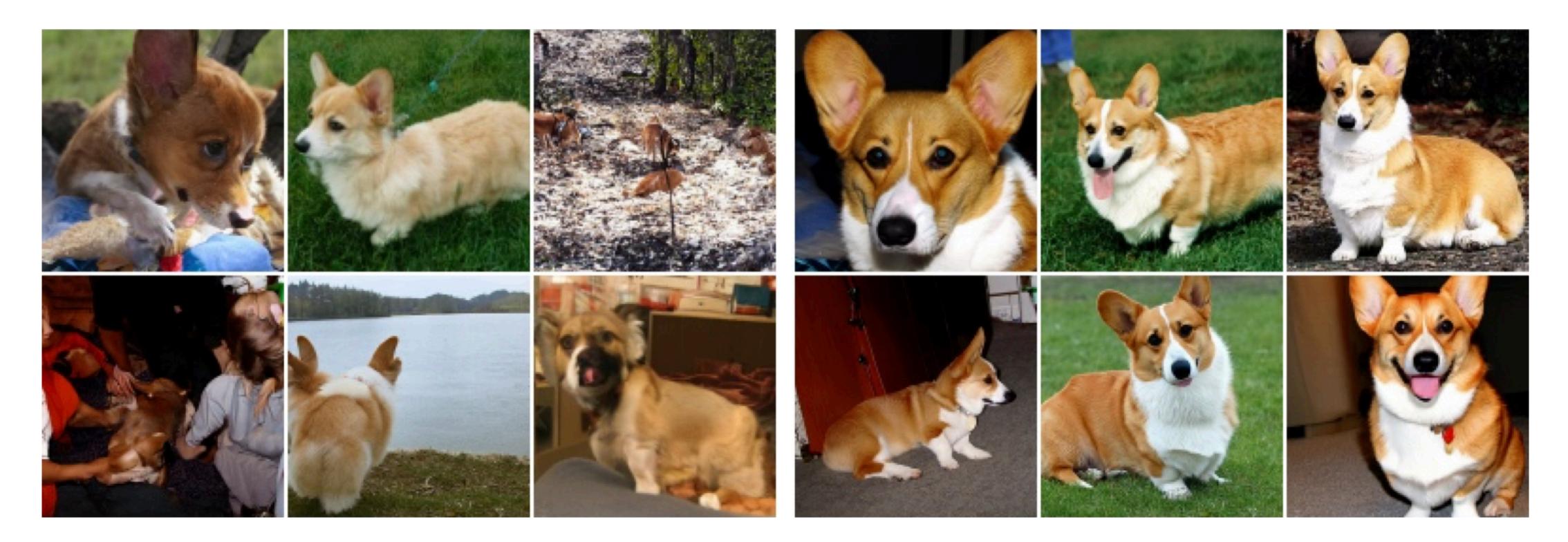
Raspberry Beret Distribution

Classifier-Free Guidance TLDR: Amplify Delta Between Conditional, Unconditional Predictions

- ϵ_{ϕ} Predicted Noise
- Null Prompt ()
- Target Prompt
- **CFG Scale**

 $\epsilon_{\phi,CFG} = s \cdot \left(\epsilon_{\phi}(\mathbf{x}_t;c) - \epsilon_{\phi}(\mathbf{x}_t;\emptyset) \right) + \epsilon_{\phi}(\mathbf{x}_{\theta};\emptyset)$

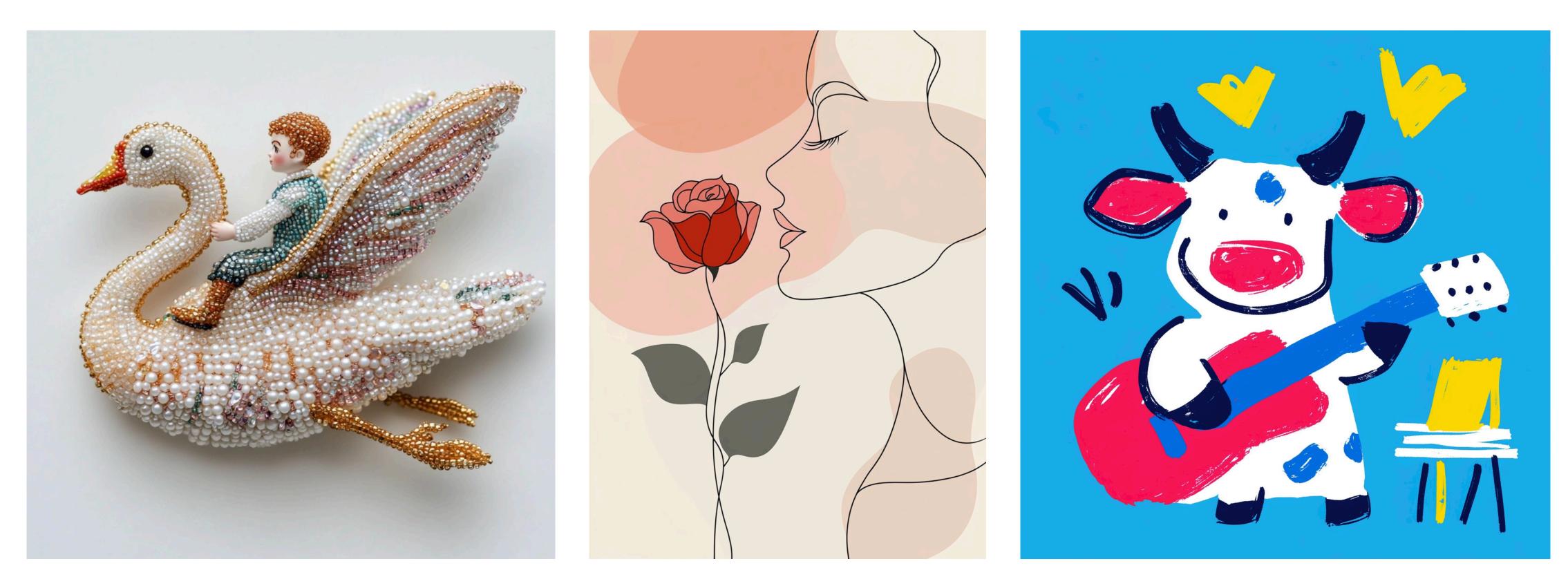
Classifier-Free Guidance Drives Generations Toward Conditional Mode



s = 1 (Conditional Generation)

s = 3 (Conditional Generation)

"Classifier-Free Diffusion Guidance" Ho et al. (2022)



Text-Conditioned Diffusion Samples (Midjourney)

iext-Conditioned Diffusion Sample

(Veo 2)

Guidance Lets Us Sample a Conditional Distribution

$p(x \mid c)$

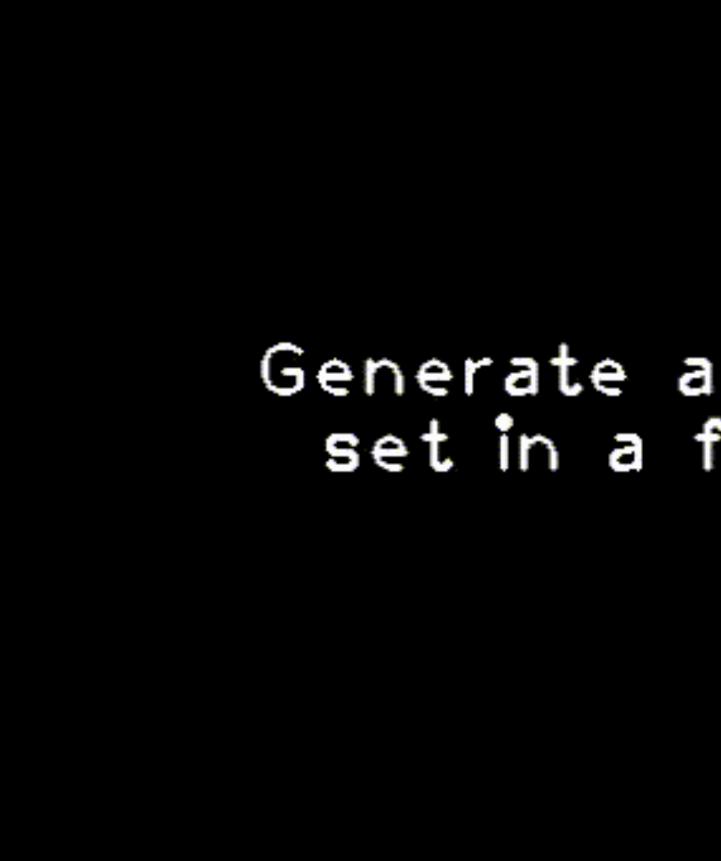
Guidance Lets Us Sample a Conditional Distribution

What if we're creative about the conditioning?

$p(x \mid c)$

Condition on the First frame and Audio, Generate the Video

OmniHuman-1: Rethinking the Scaling-Up of One-Stage Conditioned Human Animation Models. Lin et al. (2025)



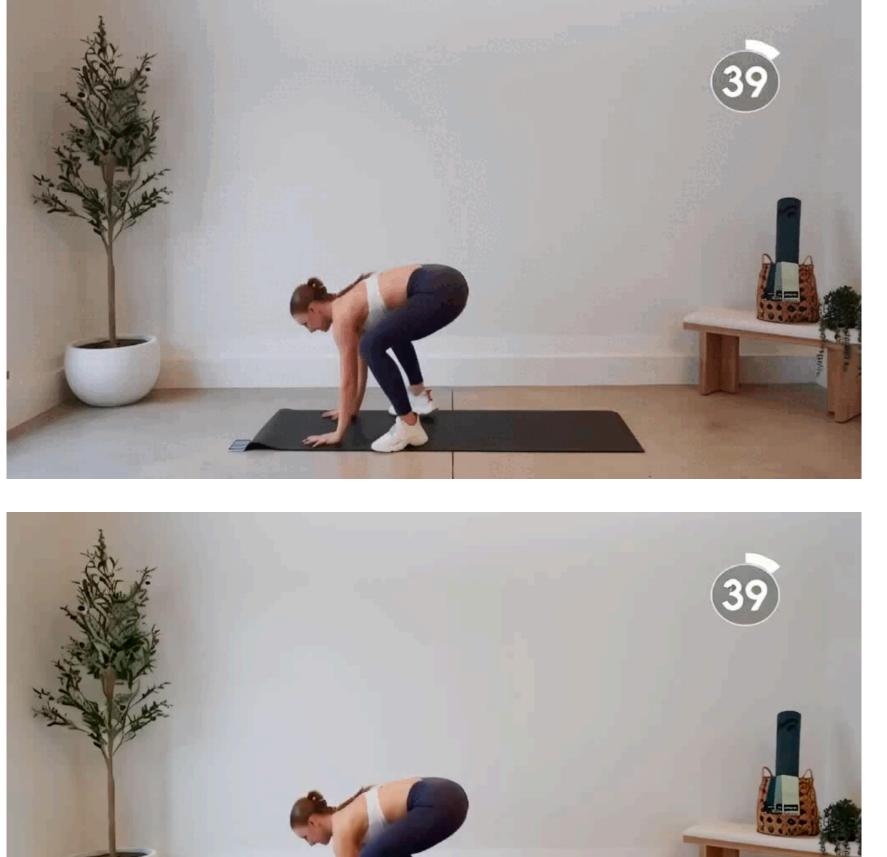
Condition on the First Frame and Actions, Generate an Interactive Environment

Generate a playable world set in a futuristic city

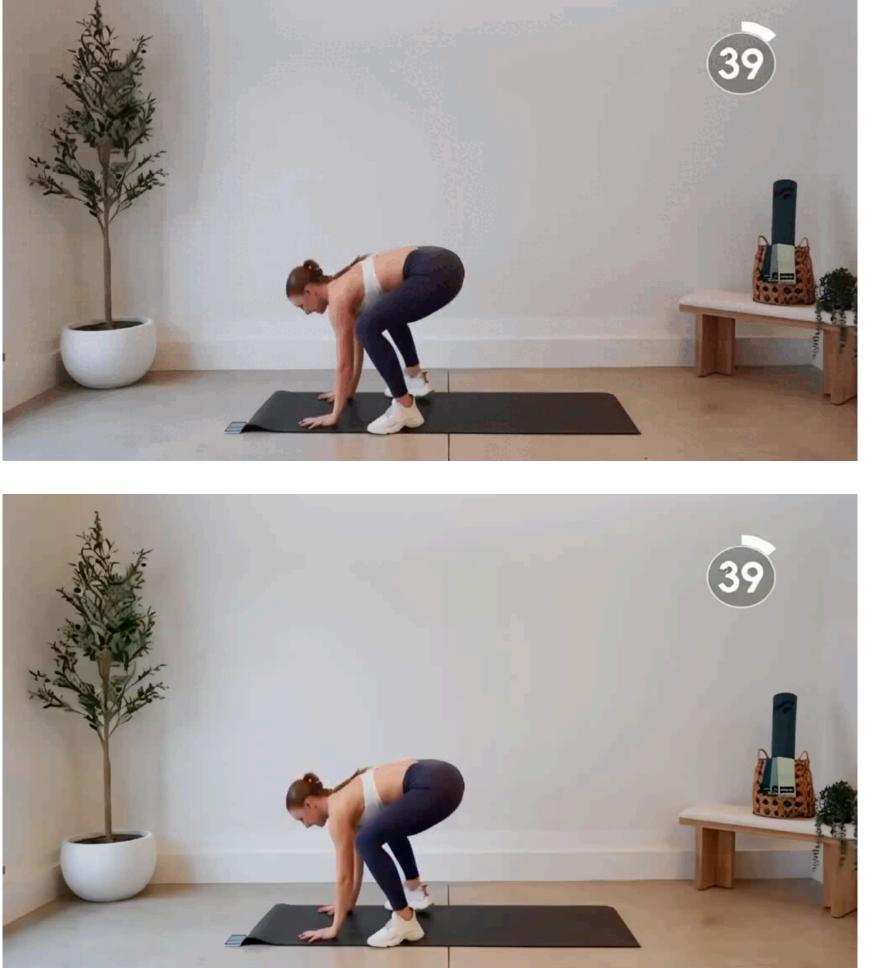
Genie: Generative Interactive Environments. Jake et al. (2024)

Condition on Video Pixels, Generate Depth Map

"Generating Consistent Long Depth Sequences for Open-world Videos" Hu et al. (2025)



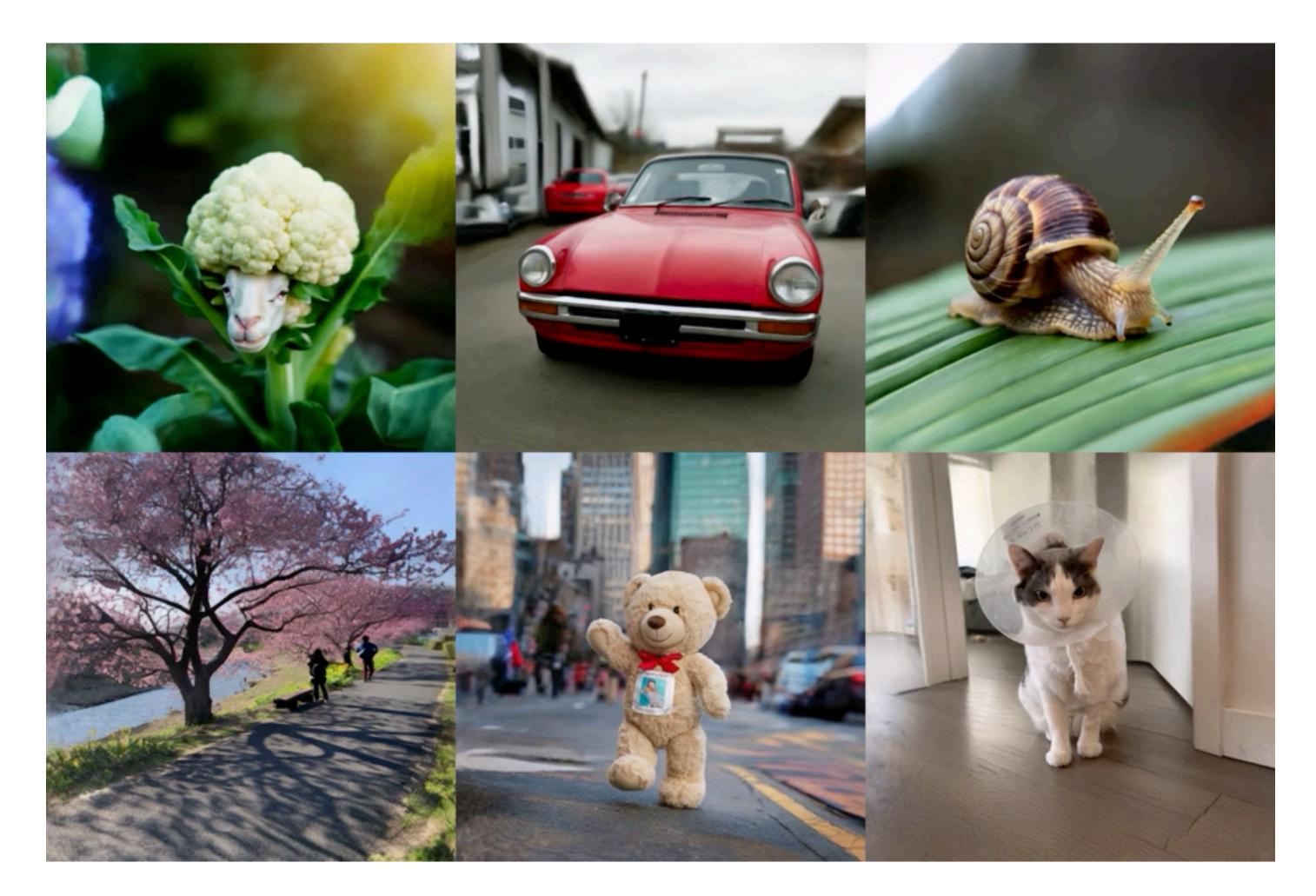
Conditioning



Samples

Condition on Start and End Frame, Generate Intermediate Frames

"Explorative Inbetweening of Time and Space" Feng et al. (2024)

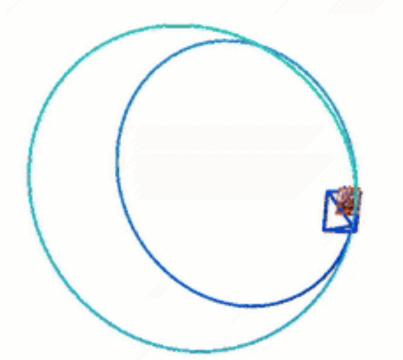


Condition on Image + Camera, Generate Novel Views

"CAT3D: Create Anything in 3D with Multi-View Diffusion Models" Gao et al. (2024)

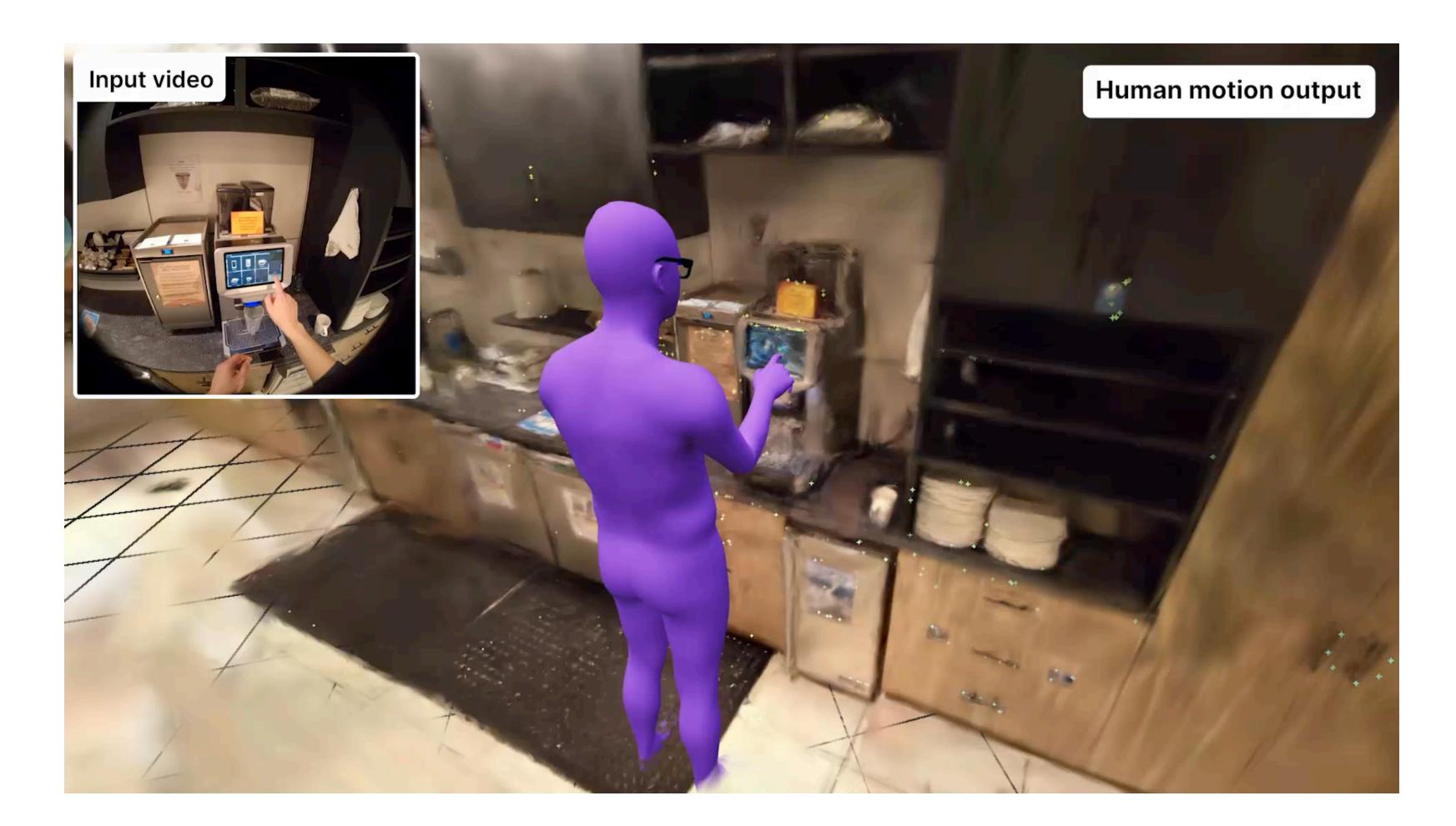
INPUT VIEW

CAMERA CONTROL



Condition on Image + Camera, Generate Novel Views

Stable Virtual Camera: Generative View Synthesis with Diffusion Models (Zhou*, Gao* et al.)



Condition on Ego View, Generate Human Poses

"EgoAllo" Yi et al. (2025)

