More Generative Models

CS280
Spring 2025

Angjoo Kanazawa

Mid-term Logistics

* March 19th Wed before spring break
* Next Wednesday

* Written exam

* One page (8.5 x 11 in/A4) cheatsheat allowed (both sides)

Final project logistics

* Group of 3 is encouraged. Maximum 4, but more people = higher
expectations.

Deliverables:
* 1 page proposal due a week+ after Spring break

* Final project presentation during RRR week over the two dates 5/5
and 5/7

* Presentation length: 3~5min

* Written report due 5/14

Generative Models

* Autoregressive models
* Flow based generative models
* Variational autoencoders (VAEs)

* Generative adversarial networks (GANSs)

Flow based Generative Models

R_D
Y *\«*”"'*ﬂo

RD

Psource Ptarget

Latent Space Generative Models

RD
d << D

Psource Ptarget

Latent space mapping approach

J

V4
N\
\\
\\ < y

Latent space N S Data space
~ N\

\ N
o

Data likelihood: ps(z) = [po(2)pe(z|2)dz

Slide credit: Assaf Socher

Autoencoders

| AE does not transform one *pre-determined* distribution to another!

Latent space

Data space

0
Slide credit: Assaf Socher

Variational Autoencoders

 The Encoder maps x to z. f(“q:) — <
* But need to be able to sample from z! like p(z)
* SO we need the encoder to learn p(z|x)

» But how to get p(z|x)....? p(z|lr) = p(z|2)p(2)
* What's wrong? p(ﬂ:)

» So learn qg(z|x) and make it close to p(z) DL(q(z|z)||p(2))

* Through ELBO (will do later):

max log p(z) >= Ey(,|s) log p(z|2) — DL(q(2|z)||p(2))

* l.e. max p(x|z) while regularize q(z|x) to be close to p(z)

KL divergence on (z|x) with p(x)

* Has a nice closed form if we use gaussians forq and p

q(z|z) = N (,0%) p(z) = N(0,1)

Objective:]Ezwq(z|:1:)]ng($1|z) o DL(Q(Z|$Z)||p(Z))

Another perspective Dra(P11 @)~ X pte) g 21,

- Q(z
q¢(z|sci>] * @

Dir(gs(z|zi)|[p(2)) = Eongy(efar) llog p(z)

= Eg(zlei) 108 G (2]2i)] — Eegy(22i) [log p(2)]

Entropy! —H(q¢5 (Z|fb"z)) H(p) = —Eprpiayllogp(z)] = — [p(x) log p(z)dx

— Drr(gs(2[2i)[|p(2)) = Ezngy (ol log p(2)] + H(gs(2]2:))

Re-written Objective: *:zmq(zk?:) logp(mz\z) T log p(Z) + H(Q(z‘ﬂj%))

A brief aside...

Entropy: :

0 0.5 1
PriX=1)
conf () 4
H(p) = —Earp(a) log p(x)] = — / p(x)log p(x)dz : Ahigh
xZT
Intuition 1: how random is the random variable? . T
Intuition 2: how large is the log probability in expectation under itself p(x) ‘
low
xr

Slide credit: Chelsea Finn CS330

A brief aside...

H(X)

0.5

Entropy: 0 :

PrXe 1
H(p) =~ Eanpioyllop()] = — [p(z) log pla)do e g o
x
Intuition 1: how random is the random variable? /—A > 7
Intuition 2: how large is the log probability in expectation under itself p(x) I
oW
what do we expect this to do? ‘ .

E.q.(»)log p(zi|2) +log p(2)] + H(q:)

this maximizes the first part

p(wi 2) 4

this also maximizes the second part

/ (makes it as wide as possible)

Slide credit: Chelsea Finn CS330

Another Iintuition

/p(z) Big bubble

.\ Little bubble
® ° q(z|T)

Nice converstaion with Yan LeCunn

How do you train through sampling?

— q(zlx;) ~ 2z

L
Lq fop(Ti) + eop(T
— TOp Ty —
e ~N(0,1)

Slide adapted from: Chelsea Finn CS330

Variational Autoencoders (Kingma&Welling 2014)

Regularization:

encourage p(z) ~ N(0,1) Reparameterization

by KL divergence: - trick

n ()
Z 2 + 2 . l () . 1 /
O; Tu; —108(0; é’ E
i=1 NNoSrwglc(aOJ(‘l:)redit: Assaf Socher

VAE AE

Also check out the scale!

e]

0
35 30 25 0 S S - Slide credit: Assaf Socher

Probabilistic interpretation

Data likelihood: pg(z)

N(0,1)

= [po(2)pe(z|2)d=

Goal: make log pg (:B(i)) as high as possible

Sample z from z|:t: ~

le:r:a zlm)

AN

Hz|x

Encoder network

q¢(2|T)

(parameters ¢)

z|::c

Sample x|z from $|z ~ N(Mm|,z-,- 2:r.:lz)

e

Hz|z

Decoder network

(parameters 0)

Slide credit: Assaf Socher

log pg(z'?) =

Slide credit: Stanford c¢s231n

Slide credit: Assaf Socher

log pg (V) = B, q,(z]z®) {10gp9(:13(i))] (po(x(?) Does not depend on z)

=E. |lo

po (x| Z);Dﬁ(z)]
. Bayves” Rule

po (x| 2)po(2) go(z | ')

= E. |log

— ., -lngg(iE(i) | 2)

po(z | x)) qe(z | 2D)

=E, -logpg(:t:(";} | z)-

f

Decoder network gives p,(x|z), can
compute estimate of this term through
sampling. (Sampling differentiable
through reparam. trick, see paper.)

(2] 29)
pe(2)

—E, [log d¢

] (Multiply by constant)

] +E, [log

(4)
go(z | x ,
pjgz || m(’i))] (Logarithms)

— Drr(gs(2 | 2 || po(2)) + Drr(gs(z | 7)) || po(z | 1))

f

This KL term (between
Gaussians for encoder and z
prior) has nice closed-form
solution!

*

Pg(2]X) intractable (saw
earlier), can’'t compute this KL
term :(But we know KL
divergence always >= 0.

Slide credit: Stanford cs231n

Slide credit: Assaf Socher

Generate data

ddddddd

Slide credit: Assaf Socher

How about this idea for a generative model?

Slide credit: Assaf Socher

No good! Multimodality not obtained!

In expectation: every noise is mapped to every instance

Best L2 solution: All noise is mapped to the mean
(For images: ~ grey image)

Slide credit: Assaf Socher Data sSpace

Generative Adversarial Networks

!

1_" BTe Goolédlos
e S g Lo,

+ Dagrna wndd Lniversity p(p Ugrs #f
'-Mr—vu-uvou- * de Medeta

S500) 1

2014 2015 2016 2017 2018 2019 I z g ;

of GAN related papers per year
(Salehi et al.) AN

Slide credit: Assaf Socher

Q: What makestaa¢ped counterfeiter?

Q: Who do you train first?

A: Alternate training! G,D,G,D....

Minimax game: VIaupdatewsaghit€Op A0 e Péafsipds

min mlglx{IExNPdata log(D(x)) + E,.p log(1 — D(G(2)))}

FAQL: Why does it work?

* D learns probabillity! G trains to sample instance with high
probability!

* Objective does not determine mapping directly- arrangement of
latent space is learned!

* Theory: minimizes JS divergence between generated and real
distributions.

Slide credit: Assaf Socher

Slide credit: Assaf Socher

FAQZ2: Why alternating?

« Gradients are meaningless whe
game Is unbalanced.

* Pre-train D? Negative examples?

* Pre-train G? What loss?
For G, D is a learned loss function Without evil their is no goad,

And without the joker their is no batman.

GANIs,
Goodfellow
2014

- F"’

'

£ .‘D
:

Slide credit: Assaf Socher

DCGAN Radford 2015

(Generator : 1 Discriminator

- r\—\ R\ um {/7\

A

"t
iy

Slide credit: Assaf Socher

Latent space interpolation

Slide credit: Assaf Socher

Why does it work?

A

J

Latent space

i

>

>

W

Data space

1. Every point is mapped to a valid example.

2. Network is continuous.

Slide credit: Assaf Socher

Evaluation metrics: Inception score

'y |

iy

jueyds|3
18D
6o

Different labels sum to give uniform distribution

[
- -
— — >
= sum
: (:E:|

s Drr(p(ylx) || p(y)))

Slide credit: Assaf Socher

Fréchet Inception Distance (FID)
o Depends on the number of samples!

lllllllll

lllllllllllllllllllllllllllllllllll

L J .“-\._ A -'_ o " _/'.
\ SR
"

5. FID(z,9) = ||pte — NgH% + Tr(X; + 2ig — 2(E$29)§)

—

— ’fﬂf’hh%%
e Slide credit: Assaf Socher

Image to Image translation

WwWaman

| | | | | Isola et al. Nov2016
Slide by Sefi Bell-Kligler & Akhiad Bercovich

Conditional GAN

D
%(Yreal J_’

(

o

Lo can = mGin max El[log D(y, x)] + E[log(1 — D(G(x), x))]

Slide by Sefi Bell-Kligler & Akhiad Bercovich

I
D
e

M Real/Fake
N

)

Pix2Pix

Lo_can = mGin max E[log D(y, x)] + E[log(1 — D(G(x), x))]
— L1 =ly—G(x2)ll;

Objective = Ly_gany + A L4

| | | | | Isola et al. Nov2016
Slide by Sefi Bell-Kligler & Akhiad Bercovich Slide credit: Assaf Socher

Training GANs Is hard

e GANSs can over-train

ADDICTS: BEFORE AND AFTER

o AT o = TN
D 3 A Wy 0 e
AT R LY

e Mode co’

Training
GANS
Be like:

;.n:m@ﬁl\
- - | sp“\\\v\:‘
M

‘ Sandwiched Betwe(n Tv o Sister

Step 15k Step 20k Step 25k 03

Slide credit: Assaf Socher

Progressive Grow

G Latent Latent Latent
v v v
L 4x4 | L 44 | [4xa]
| | 8x8 | I| |I
: |]
[|
! : [|
: ! I |
'. ! ' '
: | 1024x1024 |
BR. BR. - B
. Reals . iReals 1iReaIs
D B | 1024x1024 |
P |]
o | |
Do I |
L | |
'R | 1
D | 8x8 | = =
| 4x4 | L 4x4 | [axa]
Training progresses >

Progressive Growing of GAN, Karras et al., Feb2018
Slide by Sefi Bell-Kligler & Akhiad Bercovich

—MN

4 x4
X' X
Training time: 0 days
4x4 resolution
Z = random code
Generator)
Discriminator x=redlImage
- P
T x' = generated image

Progressive Growing of GAN, Karras et al., Feb2018

https://www.youtube.com/watch?v=XOxxPcy5Gr4

Style Modules (AdalN)

Synthesis
Network
Latent A—ﬁ : 4] n channels
P X
Code Normalize) Qo
; r? X 33
’ a <
Upsample) -
—A—> w 1x512 | ~
AdaiN | - l l
- | Conv3x3 | A Learned affine Normalize channel
§ A AdalN transformation _(by its mean and variance) »
o — - 8x8 Q
.\ | o
AN 2xn : zZ
| 16%16| I Ysi , Scale and bias
v K Yb,i channel
v X; — p(X;)
Ll -A—> 1024x1024 AdaIN(x;,y) = ys.i —a(x-) + ¥b,is
512X1 i

The generator’s Adaptive Instance Normalization (AdalN)

StyleGAN, Karras et al. NVIDIA 2019

Results

{
\ N
-

everything
else

Source A:

gender, age, hair length, glasses, pose

.} i\ ‘
4

Result of combining A and B

	Default Section
	Slide 1: More Generative Models
	Slide 2: Mid-term Logistics
	Slide 3: Final project logistics
	Slide 4: Generative Models
	Slide 5: Flow based Generative Models
	Slide 6: Latent Space Generative Models
	Slide 7: Latent space mapping approach
	Slide 8: Autoencoders
	Slide 9: Variational Autoencoders
	Slide 10: KL divergence on q(z|x) with p(x)
	Slide 11: Another perspective
	Slide 12
	Slide 13
	Slide 14: Another intuition
	Slide 15: How do you train through sampling?
	Slide 16: Variational Autoencoders (Kingma&Welling 2014)
	Slide 17: AE
	Slide 18: Probabilistic interpretation
	Slide 19: Slide credit: Stanford cs231n
	Slide 20: Slide credit: Stanford cs231n
	Slide 21: Generate data
	Slide 22: How about this idea for a generative model?
	Slide 23: No good!
	Slide 24: Generative Adversarial Networks
	Slide 25: Q: What makes a good counterfeiter?
	Slide 26: FAQ1: Why does it work?
	Slide 27: FAQ2: Why alternating?
	Slide 28: GANs, Goodfellow 2014
	Slide 29: DCGAN Radford 2015
	Slide 30: Latent space interpolation
	Slide 31: Why does it work?
	Slide 32: Evaluation metrics: Inception score
	Slide 33: Fréchet Inception Distance (FID)
	Slide 34: Image to Image translation
	Slide 35: Conditional GAN
	Slide 36
	Slide 42: Training GANs is hard
	Slide 45: Progressive Grow
	Slide 46
	Slide 47: Style Modules (AdaIN)
	Slide 48: Results

