The early history of ANNs for
visual recognition



Handwritten digit recognition

PRYAL
LeCun’s Convolutional Neural Networks variations (0.8%,
0.6% and 0.4% on MNIST)

Tangent Distance(Simard, LeCun & Denker: 2.5% on USPS)
Randomized Decision Trees (Amit, Geman & Wilder, 0.8%)
SVM on orientation histograms(Maji & Malik, 0.8%)
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Fie. 4. Size-normalized examples from the MNIST database.



The MNIST DATABASE of handwritten digits
yann.lecun.com/exdb/mnist/ —
Yann LeCun & Corinna Cortes

* Has a training set of 60 K examples (6K examples
for each digit), and a test set of 10K examples.

* Each digitis a 28 x 28 pixel grey level image. The
digit itself occupies the central 20 x 20 pixels, and
the center of mass lies at the center of the box.

 “Itis a good database for people who want to try learning
techniques and pattern recognition methods on real-world
data while spending minimal efforts on preprocessing and
formatting.”



Convolutional Neural Networks
LeCun et al (1989)
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Convolutional Neural Networks
(LeCun et al)
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LeNet-5, the Convolutional Neural Network used in the
experiments. LeNet-5 comprises 7 layers, not counting the
input, all of which contain trainable parameters (weights).
The input is a 32x32 pixel image. This is significantly larger
than the largest character in the database {at most 20x20
pixels centered in a 28x28 field). The reason is that it is
desirable that potential distinctive features such as stroke
end-points or corner can appear in the center of the recep-
tive field of the highest-level feature detectors. In LeNet-5
the set. of centers of the receptive fields of the last convolu-
tional layer (C3, see below) form a 20x20 area in the center
of the 32x32 input. The values of the input pixels are nor-
malized so that the background level (white) corresponds
to a value of -0.1 and the foreground (black) corresponds
to 1,175, This makes the mean input roughly 0, and the
variance roughly 1 which accelerates learning [46].

In the following, convolutional layers are labeled Cx, sub-
sampling layers are labeled Sx, and fully-connected layers
are labeled Fx, where x is the layer index.

Layer C1 is a convolutional layer with 6 feature maps.
Each unit in each feature map is connected to a 5x> neigh-
borhood in the input. The size of the feature maps is 28x28
which prevents connection from the input from falling off
the boundary. C1 contains 156 trainable parameters, and
122,304 connections.

Layer S2 is a sub-sampling layer with 6 feature maps of
size 14x14. Each unit in each feature map is connected to a
2x2 neighborhood in the corresponding feature map in C1.
The four inputs to a unit in 52 are added, then multiplied
by a trainable coefficient, and added to a trainable bias.
The result is passed through a sigmoidal function. The
2x2 receptive fields are non-overlapping, therefore feature
maps in S2 have half the number of rows and column as
feature maps in C1. Layer S2 has 12 trainable parameters
and 5,880 connections.

Layer C3 is a convolutional layer with 16 feature maps.
Each unit in each feature map is connected to several 5xb
neighborhoods at identical locations in a subset of S2°s
feature maps. Table T shows the set of S2 feature maps



Layer S2 is a sub-sampling layer with 6 feature maps of
size 14x14. Each unit in each feature map is connected to a
2x2 neighborhood in the corresponding feature map in CIL.
The four inputs to a unit in 52 are added, then multiplied
by a trainable coefficient, and added to a trammable bias.
The result is passed through a sigmoidal function. The
2x2 receptive fields are non-overlapping, therefore feature
maps in S2 have half the number of rows and column as
feature maps in C1. Layer 52 has 12 trainable parameters
and 5,880 connections.

Layer C3 is a convolutional layer with 16 feature maps.
Each unit in each feature map is connected to several 5x5
neighborhoods at identical locations in a subset of S2°s
feature maps. Table I shows the set of S2 feature maps

combined by each C3 feature map. Why not connect ev-
ery 52 feature map to every C3 feature map? The rea-
son is twofold. First, a non-complete connection scheme
keeps the number of connections within reasonable bounds.
More importantly, it forces a break of symmetry in the net-
work. Different feature maps are foreed to extract different,
(hopefully complementary) features because they get dif-
ferent. sets of inputs. The rationale behind the connection
scheme in table I is the following. The first six C3 feature
maps take inputs from every contiguous subsets of three
feature maps in 52. The next six take input from every
contiguous subset of four. The next three take input from
some discontinuous subsets of four. Finally the last one
takes input. from all 52 feature maps. Layer C3 has 1,516
trainable parameters and 151,600 connections.

012 3 45 6 7 8 9 10111213 14 15
0] X X X X X X X X X X
1 X X X X X X X X X X
2| X X X X X X X X X X
3 X X X X X X X X X X
4 X X X X X X X X X X
5t X X X X X X X X X X

TABLE 1

IEACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED



Training multi-layer networks




How do we find objects in real images?
The PASCAL VOC object detection challenge 2006-2015

Dining Table Horse

Motorbike Person




The AlexNet paper from 2012

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca 1ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—-64,896-64,896-43,264—
4096-4096-1000.



Figure 3: 96 convolutional kernels of size
11x11x 3 learned by the first convolutional
layer on the 224 X224 x 3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.



How do we find objects in real images?
The PASCAL VOC object detection challenge 2006-2015

Dining Table Horse

Motorbike Person




Two main approaches

* Sliding windows at multiple scales
* Bottom-up region/bounding box proposals



Bottom-up grouping as input to recognition

Original Image Multiscale hier. Ground truth MCG best candidates among 400

We produce superpixels of coherent color and texture first,
then combine neighboring ones to generate object candidates



R-CNN: Regions with CNN features

Girshick, Donahue, Darrell & Malik (CVPR 2014)

aeroplane? no.

Input  Extract region Compute CNN Classify regions
image  proposals (~2k / image) features (linear SVM)



Published as a conference paper at ICLR 2015

VERY DEEP CONVOLUTIONAL NETWORKS
FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman™
Visual Geometry Group, Department of Engineering Science, University of Oxford
{karen,az}@robots.ox.ac.uk

ABSTRACT

In this work we investigate the effect of the convolutional network depth on its
accuracy in the large-scale image recognition setting. Our main contribution is
a thorough evaluation of networks of increasing depth using an architecture with
very small (3 x 3) convolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16-19
weight layers. These findings were the basis of our ImageNet Challenge 2014
submission, where our team secured the first and the second places in the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best-performing ConvNet models publicly available to facili-
tate further research on the use of deep visual representations in computer vision.



1. The Use of 3x3 Filters

>~ Un

15t 3x3 conv. layer

2" 3x3 conv. layer

2 layers of 3x3 filters already covered the 5x5 area

By using 2 layers of 3 x 3 filters, it actually have already covered 5x5
area as in the above figure. By using 3 layers of 3 X3 filters, it actually
have already covered 7 X 7 effective area. Thus, large-size filters such as
11x11 in AlexNet [3] and 7 x 7 in ZFNet [2] indeed are not needed. (If



Another reason is that the number of parameters are fewer. Suppose

there is only 1 filter per layer, 1 layer at input, and exclude the bias:

1 layer of 11X 11 filter, number of parameters = 11x11=121
5 layer of 3 x3 filter, number of parameters = 3xX3xX5=45

Number of parameters is reduced by 63%

1 layer of 7 x 7 filter, number of parameters = 7X7=49
3 layers of 3 x 3 filters, number of parameters = 3xX3x3=27

Number of parameters is reduced by 45%

By using 1 layer of 55 filter, number of parameters = 5X5=25
By using 2 layers of 3 X3 filters, number of parameters = 3xX3+3xX3=18

Number of parameters is reduced by 28%



Deep Residual Learning for Image Recognition

Kaiming He

Xiangyu Zhang

Shaoging Ren Jian Sun

Microsoft Research
{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up ro 152 layers—8x
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the [ st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

8
8

56-layer

20-layer
56-layer

training error (%)
test error (%)

20-layer

-
B

1 6 o 1 [

" ter. (led) " ter. (led)
Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.

Driven by the significance of depth, a question arises: Is
learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
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Figure 2. Residual learning: a building block.
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: aplain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.



Now we can train deeper networks!

20

iter. (le4)

40 50

error (%)

ResNet-18 T AN AN~
==ResNet-34 34-layer
2 T . . . ;
2% 10 20 30 40 50
iter. (led)

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

-
3

reducing of the training error’. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3 x3 filters as in Fig. 3
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Training R-CNN

Bounding-box labeled detection data is scarce

Use supervised pre-training on a data-rich
auxiliary task and transfer to detection



R-CNN training: Step 2

Fine-tune the CNN for detection
Transfer the representation learned for ILSVRC
classification to PASCAL (or ImageNet detection)

fine-tune CNN




Fast R-CNN (Girshick, 2015)

R-CNN with SPP features, no need to warp individual windows

{ Ll bbox
JRiEceP softmax regressor
I"[* | ConvNet| | T
e Rol FC FC

_ pooling
layer ) £CS
projection
Conv X[ Rol feature
feature map vector For each Rol

There is also Faster R-CNN
which doesn’t require external proposals



Learning Transferable Visual Models From Natural Language Supervision

Alec Radford”! Jong Wook Kim "' Chris Hallacy' Aditya Ramesh' Gabriel Goh' Sandhini Agarwal'
Girish Sastry! Amanda Askell! Pamela Mishkin! Jack Clark' Gretchen Krueger! Ilya Sutskever '

(1) Contrastive pre-training (2) Create dataset classifier from label text
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training

examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

CLIP : Contrastive Language Image Pretraining



Sigmoid Loss for Language Image Pre-Training

Xiaohua Zhai* Basil Mustafa Alexander Kolesnikov Lucas Beyer*
Google DeepMind, Ziirich, Switzerland

{zxzhai, basilm, akeclesnikov, lbeyer}@goocgle.com

Instead of the softmax-based contrastive loss, we pro-
pose a simpler alternative that does not require computing
global normalization factors. The sigmoid-based loss pro-
cesses every Image-text pair independently, effectively turn-
ing the learning problem into the standard binary classifica-
tion on the dataset of all pair combinations, with a positive
labels for the matching pairs ([, T;) and negative labels for
all other pairs (I;, T+ ). It 1s defined as follows:

1B 18] |
|E|Zzlﬂgl+efu[ ey 8)
A

i=1 j=1
J

where z;; 1s the label for a given image and text input, which
equals 1 1f they are paired and —1 otherwise. Note that at



The Past, Present, and Future
of Object Detection

Ross Girshick (FAIR)

in collaboration with
Kaiming He (FAIR), Georgia Gkioxari (FAIR), Tsung-Yi Lin (Google Brain),
Bharath Hariharan (Cornell), and Piotr Dollar (FAIR)

Facebook Al Research

@ UC Berkeley Oct 2, 2017
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COCO Object Detection Average Precision (%)

Area under a detector’s precision-recall curve, averaged over...
» Object categories
» True positive overlap requirement (loU from 0.5 to 0.95; see below)

boxes

masks

Figure credits: Dollar and Zitnick (top), Krahenbiihl and Kulton (bottom)



COCO Object Detection Average Precision (%)

Past
(best circa
2012)

5
—

DPM
(Pre DL)

Felzenszwalb, Girshick, McAllester, Ramanan. Object Detection with Discriminatively Trained Part Based Models. PAMI 2010.



COCO Object Detection Average Precision (%)

Past Early
(best circa 2015
2012)
15
: ﬂ } Movement to
DL methods
]
DPM Fast R-CNN
(Pre DL) (AlexNet)

Girshick. Fast R-CNN. ICCV 2015.



COCO Object Detection Average Precision (%)

Past Early
(best circa 2015
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]
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Girshick. Fast R-CNN. ICCV 2015.



COCO Object Detection Average Precision (%)
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Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.



COCO Object Detection Average Precision (%)

Past Early
(best circa 2015
2012)
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Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.



COCO Object Detection Average Precision (%)

Past Early
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Lin et al. Feature Pyramid Networks. CVPR 2017.



COCO Object Detection Average Precision (%)

Past Early Today
(best circa 2015 2017
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DPM Fast R-CNN Fast R-CNN Faster R-CNN Faster R-CNN Faster R-CNN Mask R-CNN
(Pre DL) (AlexNet) (VGG-16) (VGG-16) (ResNet-50) (R-101-FPN) (X-152-FPN)

He, Gkioxari, Dollar, Girshick. Mask R-CNN. ICCV 2017.



COCO Object Detection Average Precision (%)

Past Early 2.5 years ~ Today
(best circa 2015 2017
2012)
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(Pre DL) (AlexNet) (VGG-16) (VGG-16) (ResNet-50) (R-101-FPN) (X-152-FPN)
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1. What is this?
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2. What made this possible?

Past Early 2.5 years ~ Today
(best circa 2015 - 2017
2012)
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Progress wit 29
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(Pre DL) (AlexNet) (VGG-16) (VGG-16) (ResNet-50) (R-101-FPN) (X-152-FPN)



3a. How good is this?

Past Early Today

(best circa 2015 2017
2012)
46
36 39
29
19
15
5
]
DPM Fast R-CNN Fast R-CNN Faster R-CNN Faster R-CNN Faster R-CNN Mask R-CNN

(Pre DL) (AlexNet) (VGG-16) (VGG-16) (ResNet-50) (R-101-FPN) (X-152-FPN)



3b. What’s next?

Past Early Today
(best circa 2015 2017
2012)
46
36 39
29
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DPM Fast R-CNN Fast R-CNN Faster R-CNN  Faster R-CNN  Faster R-CNN  Mask R-CNN
(Pre DL) (AlexNet) (VGG-16) (VGG-16) (ResNet-50) (R-101-FPN) (X-152-FPN)
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Let’s start: What is this?
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Girshick, Donahue, Darrell, Malik. Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. CVPR 2014.

“Slow” R-CNN

Per-image computation Per-region computation for each r; € r(I)

— 1-vs-rest SVMs
ConvNet(ri)}_ @

@ — Box regressor

(s)

Selective search,
Edge Boxes,
MCG, ...

(1)




“Slow” R-CNN

Per-image computation Per-region computation for each r; € (1)

1-vs-rest SVIVISJ

Box regressor }

(s)

Very heavy per-region computation
E.g., 2000 full network evaluations

| [ *[ ConvNet(ri)]‘

(2)

Selective search,
Edge Boxes,
MCG, ...

(1)




“Slow” R-CNN

Per-image computation Per-region computation for each r; € (1)

1-vs-rest SVMs

ConvNet(r;)

Box regressor }

Selective search,
Edge Boxes,
MCG, ...




Generalized R-CNN Approach to Detection

Per-image computation

Per-region computation for each r; € (1)

Classification J
v

S v

Box regressor }




Girshick. Fast R-CNN. ICCV 2015.

Fast R-CNN

Per-image computation Per-region computation for each r; € r(I)

| I | | | I | | | 1
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— Softmax clf. J
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Box regressor }

Selective search,
Edge Boxes,
MCG, ...

Lightweight per-region computation




Fast R-CNN

Per-image computation Per-region computation for each r; € r(I)

| I | | | I | | | 1
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L 1 1 1 1 1 1 1 1 1

Softmax clf.
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RolPool | MLP |
| Rl JSEHE

>
NN

Box regressor }

Selective search,
Edge Boxes,
MCG, ...
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Example:
ResNet-34

Whole-image FCN

Use any standard ConvNet as the “backbone architecture”

» AlexNet, VGG, ResNet, Inception, Inception-ResNet,
ResNeXt, DenseNet, ...

» Use the first N layers with spatial extent (e.g., up to “conv5”)

1 Example feature map
| dimensions:
H (512, H/16, W/16)




Fast R-CNN

Per-image computation Per-region computation for each r; € r(I)

| I | | | I | | | 1
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L 1 1 1 1 1 1 1 1 1

Softmax clf.

4

RolPool MLP J

>
NN

Box regressor

Selective search,
Edge Boxes,
MCG, ...




RolPool (on each Proposal)

Transform arbitrary size proposal into a
fixed-dimensional representation (e.g., 2x2)

>

Proposal

Region of
Interest
(Rol)

e

ariable size Rol)




RolPool (on each Proposal)

Transform arbitrary size proposal into a
fixed-dimensional representation (e.g., 2x2)

Snapped Rol

>

Proposal
Region of
Interest
(Rol)

e

ariable size Rol)




RolPool (on each Proposal)

Transform arbitrary size proposal into a
fixed-dimensional representation (e.g., 2x2)

Snapped Rol

(Fixed dimensional
representation)

>
> RolPool ‘
Proposal transform
Region of
Interest }
(Rol)
Feature value

(Variable size Rol)

IS max over input
cells




Fast R-CNN

Per-image computation Per-region computation for each r; € r(I)

| I | | | I | | | 1
[ I I 1 I I 1 I I 1

L 1 1 1 1 1 1 1 1 1

L 1 1 1 1 1 1 1 1 1

Softmax clf. J
v

RolPool | MLP |
| Rl JSEHE

A

Box regressor }

Selective search,
Edge Boxes,
MCG, ...

Region proposals have very poor recall
(ok for PASCAL VOC, major bottleneck for COCO)
Also, they can be slow




Ren, He, Girshick, Sun. Faster R-CNN:
Towards Real-Time Object Detection. NIPS 2015.

Faster R-CNN

Per-image computation

Cerenn

Per-region computation for each r; € (1)

L 1 1 1 1 1 1 1 1 1

Softmax clf. J
v

RolPool | MLP |
Rl JSEHE

>
NN

Box regressor }

Learned proposals
Sharing computation with whole-image network




Region Proposal Network (RPN)

Proposals = sliding window object/not-object classifier + box regression
inside the same network

2k scores 4k coordinates <7 k anchor boxes
classification fc (Shared over regression fc .
FPN levels)
256-d .
intermediate fc Anchors ?re _
' prototypical object
) boxes

sliding window

conv feature map



He, Gkioxari, Dollar, Girshick.
Mask R-CNN. ICCV 2017.

Mask R-CNN

Per-image computation Per-region computation for each r; € r(I)

— Softmax clf.
[ i =Fend) }_' i ML
_ ! - Box regressor
I RolAlign }
) Mask

FCN




Mask R-CNN

Per-image computation Per-region computation for each r; € r(I)

[ i = FENU) }_' 1 MLP |

! Box regressor }

Softmax clf. J

{ RolAlign




RolAlign (on each Proposal)

Smoothly transform Rol features into
a fixed-dimensional representation (e.g., 2x2)

Grid of bilinear
e interpolation points

> ® o | e
.
Proposal

Rol from ® o | o o
RPN “

\
1 A
v
e ) e |

(Variable sizeRol)




RolAlign (on each Proposal)

Smoothly transform Rol features into
a fixed-dimensional representation (e.g., 2x2)

Grid of bilinear
e interpolation points

//
o o bt (Fixed dimensional
representation)
> ° ® ®
> RolAlign
Proposal transform
Rol from e o o T
RPN “ |
*..2 Aol Feature value is average of
(Variable size Rol) interpolated values on grid




Compare to RolPool

Preserve alignment or not?

|
align? | bilinear? | agg. | AP  APsg | AP75

RolPool [12] max | 2069 48.8 | 264+

v max| 272 492 | 271 | |

+20% relative

RolWarp [10] v lave| 27.1 489 | 27.1 | athighiou
. v v |max| 30.2 51.0 | 31.8 |/
RolAlign v v ave | 30.3 51.2 31.5/

(c) RolAlign (ResNet-50-C4): Mask results with various Rol
layers. Our RolAlign layer improves AP by ~3 points and
AP75 by ~5 points. Using proper alignment 1s the only fac-
tor that contributes to the large gap between Rol layers.



Compare to RolPool

Quantization breaks pixel-to-pixel alignment

/I Snapped Rol

(@)

Jriginal

R

RolPool coordinate

quantization




Mask R-CNN

Per-image computation

Cerenn

4

Per-region computation for each r; € (1)

Softmax clf. J

)
)

Box regressor }




Mask Head (on each Proposal)

Task specific heads for ...
» Object classification
» Bounding box detection
» Instance mask prediction

I

Standard Fast/er R-CNN head

)

RolAlign
transformed
features

Cromin

e

/X7

>

X256

L

1024

1024

— class

3 box



Mask Head (on each Proposal)

Task specific heads for ...
» Object classification
» Bounding box detection
» Instance mask prediction

RolAlign
transformed
features

{ RolAlign }

\

X7
X256

X256

AN

14%x14

N

x4

Conv3x3 * 4

—>»| 1024 | 1

—>

1NDA i’::

— class

Per-proposal FCN
predicts instance masks

7 7 7
14%x14 | 28%28. 28%28
«256 1 11 %256 | || x80

As pose




Mask R-CNN: Extension to 2D Human Pose

Per-image computation

Cerenn

4

Per-region computation for each r; € (1)

Softmax clf. J

Box regressor }

)
)




Pose Head

e

X7
11024 (7] 1024 box

Rol || X256
14)(14__) 28x28| 5 28%x28

J1ax1a]
Rol|| X256 |x4|| x256 | || x256 |  ||>%eC|x17

L e

(Not shown: Head architecture is slightly different for keypoints) keypOI nts

—>» class

» Add keypoint head (28x28x17)

» Predict one “mask” for each keypoint

left_ear 0.98

left_eye 1.00 right_eye 0.98

nose 1.00

right_. ear 0.93 left_ shoulder 0. 97right_shoulder 1.00 left_elbow 0.41 right_elbow 0.99

”

P‘.‘

left_knee 0.99

left_hip 0.96 right_ hlp 0.97

left wrist 0.91

rlght wrlst 0.97

right_knee 0.99 left_ankle 0.91 right_ankle 0.98

17 keypoint “mask”

' predictions shown as
heatmaps with OKS
e . scores from argmax

positions

» Softmax over spatial locations (encodes one keypoint per mask “prior”)



Mask R-CNN: Training

Same as “image centric” Fast/er R-CNN training

But with training targets for masks



Example Mask Training Targets

Image with training proposal 28x28 mask target Image with training proposal 28x28 mask target




Mask R-CNN: Inference

1. Perform Faster R-CNN inference
» Run backbone FCN
» Generate proposals with RPN
» Score the proposals with clf. head
» Refine proposals with box regressor
» Apply NMS and take the top K (= 100, e.g.)

2. Run RolAlign and mask head on top-K refined, post-NMS boxes

» Fast (only compute masks for top-K detections)
» Improves accuracy (uses refined detection boxes, not proposals)



I\/l a S k P re d I Ctl O n 28x28 soft prediction from Mask R-CNN

(enlarged)

Soft prediction resampled to image coordinates

(bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Validation image with box detection shown in red



I\/l a S k P re d I Ctl O n 28x28 soft prediction from Mask R-CNN

(enlarged)

AP
)‘R"\"ﬁvn-wu-m.
—— S,

boat 0.94- . boatio:9T -

e -

DOt U MG
- Pl A S S
(=)
L — | ~ ——

Soft prediction resampled to image coordinates

(bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Validation image with box detection shown in red



Original Rc

<

RolPool coordinate
quantization

Quantization breaks
pixel-to-pixel alignment

&

/I Snapped Rol e




28x28 soft prediction

Mask Prediction

Resized soft prediction Final mask

Validation image with box detection shown in red



Mask Prediction

28x28 soft prediction

Resized Soft prediction

Final mask

<\

Validation image with box detection shown in red
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On Face Recognition

Jitendra Malik



Face Recognition by Humans:
Nineteen Results All Computer
Vision Researchers Should

Know About

Increased knowledge about the ways people recognize each other may help to
guide efforts to develop practical automatic face-recognition systems.

By PAWAN SINHA, BENJAMIN BALAS, YURI OSTROVSKY, AND RICHARD RUSSELL



Recognition as a function of available spatial resolution
Result 1: Humans can recognize familiar faces in
very low-resolution images.
Result 2: The ability to tolerate degradations in-
creases with familiarity.

Result 3: High-frequency information by itself is
insufficient for good face recognition
performance.

The nature of processing: Piecemeal versus holistic

Result 4: Facial features are processed holistically.

Result 5: Of the different facial features, eyebrows
are among the most important for
recognition.

Result 6: The important cnnfigural relationships
appear to be independent across the width
and height dimensions.



The nature of cues used: Pigmentation, shape and motion

Result 7:

Result 8:

Result 9:

Result 10:

Result 11:

Result 12:

Result 13:

Result 14:

Face-shape appears to be encoded in a
slightly caricatured manner.

Prolonged face viewing can lead to high-
level aftereffects, which suggest proto-
type-based encoding.

Pigmentation cues are at least as impor-
tant as shape cues.

Color cues play a significant role, espe-
cially when shape cues are degraded.
Contrast polarity inversion dramatically
impairs recognition perfﬂrmance, possi-
bly due to compromised ability to use
pigmentation cues.

[llumination changes influence general-
ization.

View-generalization appears to be medi-
ated by temporal association.

Motion of faces appears to facilitate
subsequent recognition.



Developmental progression

Result 15:

Result 16:

The visual system starts with a rudimen-
tary preference for face-like patterns.
The visual system progresses from a piece-
meal to a holistic strategy over the first
several years of life.

Neural underpinnings

Result 17:

Result 18:

Result 19:

The human visual system appears to de-
vote specialized neural resources for face
perception.

Latency of responses to faces in infero-
temporal (IT) cortex is about 120 ms, sug-
gesting a largely feedforward computation.
Facial identity and expression might be
processed by separate systems.






Fig. 1. unlike current machine-based systems, human observers are able to handle significant degradations in face images. For instance,
subjects are able to recognize more than half of all familiar faces shown to them at the resolution depicted here. Individuals shown in
order are: Michael Jordan, Woody Allen, Goldie Hawn, Bill Clinton, Tom Hanks, Saddam Hussein, Elvis Presley, Jay Leno,

Dustin Hoffman, Prince Charles, Cher, and Richard Nixon.






Fig. 6. Even drastic compressions of faces do not render them
unrecognizable. Here, celebrity faces have been compressed to 25%
of their original width. Yet, recognition performance with this set

is the same as that obtained with the original faces.



This CVPR2015 paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in IEEE Xplore.

FaceNet: A Unified Embedding for Face Recognition and Clustering

Florian Schroff Dmitry Kalenichenko James Philbin
fschroff@google.com dkalenichenkol@google. com Jjphilbin@google.com
Google Inc. Google Inc. Google Inc.






Triplet
= Loss
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GZ—0O0OmmEmMm

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L» normalization, which
results in the face embedding. This 1s followed by the triplet loss

during training.
.(I\ha-g.ative

Negative m
AK LEARNING
Anchor

Positive Positive

Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.
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