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Logistics

* Today: 2D/3D Humans
* HW3 up on keypoint detection

* Wednesday: Jitendra

* Next Monday: Learning to predict correspondences
- Released papers for you to read in advance on Ed

* Today after class project proposal



Perceiving Humans

From Recognition to Detection to Reconstruction



Why perceive humans?

* Well they are the mostimportant thing






Learning to act from visual observation




Anticipating human behavior

it




Sport analysis

OptiTrack MySwimPro



Medical diagnosis and treatment

Photo Credit: Qualisys



Challe nges Why is perceiving humans hard?

. V.

variation in illuminatio

occlusion & clutter

Slide Credit: Deva Ramanan



2D Humans




Parts develop finer into joints & keypoints

[Ferrari, Marin-Jiménez and Zisserman CVPR ‘08]

Articulated Human Pose Estimation with Flexible Mixtures of Parts
[Yang and Ramanan CVPR ‘11]



Datasets are introduced

Leeds Sports Pose (LSP) Frames Labeled in Cinema
[Johnson and Everingham, CVPR ‘11]

4000 Train

11000 Train 1000 Test

1000 Test




Deep Learning

-ra

How do we
represent/parametrize
2D human pose???

What should the
network output?




Predicting keypoints

||1 1

DNN-based regressor

220 x 220

(i, i)

DeepPose: Human Pose Estimation via Deep Neural Networks
[Toshev and Szegedy 2014]



Predict heat maps

<Y ap preg E
»
Target: K+1 X Hx W
Gaussian around
onvolutio etwo (x,y) for k-th

keypoint in the k-th
channel

K+1 for K parts + background



L2 Training Loss

* L2 loss on the target heatmap (peaky gaussian around the gt
keypoint)

K+1 .
L= Y 0 (y) —bilay)l| T petermas
k=1 (%y) Gaussian around

(x,y) for k-th
keypoint in the k-th
channel



Log Loss Training Loss

* Log loss (or cross entropy loss) on the target heatmap
probabilities

* The target must also sumto 1

* Mask RCNN just uses 1 at the target, 0 everywhere
else. »

* Experiment
Target “belief map” :
K+1 XxXHXW
1 at Grount truth
location (X,y) for k-th
keypoint in the k-th
channel



[Wel et al CVPR 2016]

Convolutlonal Pose Machi ines
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[Wel et al CVPR 201

Convolutional Pose Machines

| stage 1 | stage 2 stage 3

J L M) L s _ v

x

R. Elbow R. Shoulder Neck Head R. Elbow R. Elbow



[Wel et al CVPR 2016]

Convolutional Pose Machines

t=1 =2 t=3 =1 =2 t=3

Wrists Elbows

Left

Right




Results




Great opensource tool, builds on convolutional
OpenPose pose machine architecture, adapted to
multiple people

Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Weli, Yaser Sheikh ‘“16-17



Are we done”?
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Today’s Non-rigid 3D Solution: Motion Capture

. ’h A Andy Serkis, The Two Towers




The world is so much more than greenscreen!
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Single-View 3D Human Mesh Recovery

[Bogo*, Kanazawax, Lassner, Gehler, Romero, Black ECCV ’16]



In everyday photos

—— __and”

Kanazawa, Black, Jacobs, Malik. Human Mesh Recovery, CVPR 2018



Or from Video

Kanazawa, Zhang, and Felsen et al. CVPR 2019
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Learning to act from visual observation




From video...

Video Recovered 3D Body Policy

Peng, Kanazawa, Malik, Abbeel, Levine “SFV: Reinforcement Learning of
Physical Skills from Videos”, SIGGRAPH Asia 2018



Animate Virtual Characters




Human 3D perception

We perceive 3D,
but computers only see 2D dots!!

Johannson
experiment,
James Maas, 1971




3D from 2D is inherently under-constrained

LD
S

X [Sinha and Adelson ‘93]




How do we resolve this?

[Bogo and Kanazawa et al. ECCV ’16]



How do we resolve this?

What human

body is like




How do we resolve this?

What human

[Kanazawa et al. CVPR 2018]



Bregler and Malik CVPR 1998

Tracking based:

1. Initialize 3D modelin
first frame

2. Track parts in next
frames via Lukas-
Kanade, over joint
angles

More stable with 2 views




And many more model-based methods

[ Kakadiaris and Metaxas ’00 ]

[Leung and Yang ‘95]

[ Plankers and Fua ’01 Sminchisescu
] and Triggs 03 ]

[ Terzopoulos
and Metaxas ’93 ]

[ Gavrilla, ‘96]

Slide modified from Michael

Rlacls



3D Humans from known 2D joints

sedric.jpeg

Reconstruction of articulated objects from point correspondences
in single uncalibrated image
[CJ) Taylor CVIU 2000]



Same issue as single-view 3D reconstruction

You need priors!!
Here: Known ratio of
limb length




Datasets

HumanEva [Sigal et al. IJCV 2010] Human3.6M [lonescu et al. 2014]



Deep Learning based approaches

Lots of activities + progress made in this area after datasets

Image ConvNet Volumetric Output

[Pavlakos et al. CVPR’17, Sun et al ICCV’17, Vnect Mehta et al SIGGRAPH ‘17 ...]



What about the 3D
representation??
Are we all just stick figures?



Practical and popular answer has

been to model what you can see =
the surface




Humans are special

Robinette et al., Civilian American and
European Surface Anthropometry Resource

Perceiving Systems, Max Planck Institute



Morphable Model of Human Bodies

[Loper et al. SIGGRAPH Asia ‘15]



How to represent surfaces?

* Meshes are a popular,
practical choice for
surfaces

e Mesh ={V, F}
* Vertices: N x 3

* Faces: |F| x{3, 4, ...}
polygons, “triangles”

parametri
e a mesh?

We need a low-
dimensional
parametrization!!




Key in modelling 3D Human Surfaces:
Factorization into Shape and Pose

AN

\A [
)
“Identity” z tkg

Individual Shape Variation
[SCAPE: Anguelov et al., SIGGRAPH ‘05]

| ( \
| /\ ?
4 =

Pose changes (Articulation)

Figures courtesy of Michael Black



Skinned Multi-Person Linear Model (SMPL)

Shape: PCA coefficients Pose: Rotation of joints Mesh

.
\""\

/8 10 6 3*23 =69

dimensions dimensions

SMPL [Loper etal. SIGGRAPH ASIA “16]



Learning Shape from 3D Scans

4000 bodies of different shapes in roughly the same pose.

Run PCA on this:
Shape = linear

combination of basis
sha PES PC 1 varied between +/-3 std dev



Pose: Forward kinematics on the skeleton tree

Defined by
relative joint
angles.




Skinned Multi-Person Linear Model (SMPL)

Shape: PCA coefficients Pose: Rotation of joints Mesh

.
\""\

/8 10 6 3*23 =69

dimensions dimensions

SMPL [Loper etal. SIGGRAPH ASIA “16]



Pose: Forward kinematics on the skeleton tree

resulting vertex position

first bone transformation

N

second bone transformation




Morphable Model of Human Bodies

[Loper et al. SIGGRAPH Asia ‘15]



Morphable model for humans

Shape: low-D subspace Pose: 23 Joint Rotations Mesh

| h‘\\ .
| i ? \\ N m‘}_ﬂ,
’ L ﬂ// — r

Total 85D defines a body Iin an image!!!

$M Q: How to recover this 85D from an |mage’7
Il 3

BERN §€R23x3 HGRG

Skinned Multi Person Linear (SMPL) model [Loper et al. SIGGRAPH ASIA ‘15]




Back to images...
3D Shape and Pose from a Single Image

SMPLify [Bogo and Kanazawa et al
CC\/’191



Overview: SMPLify

1. Automatic 2D joint detection via CNNs

2. FitSMPL pose and shape parameters




SM PLlfy Objectlve Functlon

Camera joints
I

(Ba est) —

— — —

Ej(8,0,K; Jest) + Eq(0) + Eo(0) + Eqp(6, B) + Es(5)
Data term Priors



Data Term: Joint Reprojection Error




Data Term: Joint Reprojection Error

Camera Projection




Summary: Fit to 2D joints

1. Automatic 2D joint 2. Solve for pose and shape
detection via CNN that explain the 2D joints

&

L H( . ) z <+ lots of priors

min
/376711

[Bogo and Kanazawa et al ECCV '16]



Approach: Fit to 2D joints

1. Automatic 2D joint 2. Solve for pose and shape
detection via CNN that explain the 2D joints

A P

Only looks at 2D joints, not the image
Optimization based inference = too slow for video

2
) -+ lots of priors
2

min
/8797H

[Bogo and Kanazawa et al ECCV '16



Why not just throw a deep network at it?

* Image in, 85D human parameters out!!




Challenges

1. Lackofreal paired 2D-to-3D labels

Human3.6M

[lonescu et al.
PAMI ’14]

d.
[CJ Taylor CVPR 2000]




Solution

Even though we don’t have paired 2D-to-3D labels,
we have a lot of unpaired labels

Explain the 2D

——  —

2D Labeled images 3D Scans/Motion Capture
[LSP, MPII, MS COCO,...] [CMU Mocap, CAESER, JointLimits..]



Overview: Human Mesh Recovery (HMR)

:
&= S,R,T !f A5
CG :
< \, O |/
S p
21 12 .
con—| & E0— 11(0,8) — x No ground truth for
x images in the wild!
(% Q
20
al

Kanazawa et al. CVPR 2018



Overview: Human Mesh Recovery (HMR)

x* - 2D gr_ognd
a7 . truth joints

Camera
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Shape

Projection
» X

Con

3D Regression D
§

0 Train with
2D reprojection loss

Pose

Kanazawa et al. CVPR 2018



Without any 2D-to-3D supervision...




More monsters from training




Overview: Human Mesh Recovery (HMR)
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Yes / no

Kanazawa et al. CVPR 2018



Training Data

Human3.6M
[lonescu et al. PAMI'14]

MS COCO
[Lin et al. ECCV “14]

In-the-wild 3D 2D

X
S X /



. Lap X =X Can be trained in a fully
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Overview: Human Mesh Recovery (HMR)
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Overview: Human Mesh Recovery (HMR)
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Test time: just feed forward
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Benefits of recovering a deformable model

Correspondences across recovered bodies (part segmentations)




Amodal/holistic prediction




Prediction on occluded body parts




Qualitative results on COCO w/occlusion + clutter




Sore Back Saore Rack Sore Back Sare Rack

Sore Back Sore Back

model with full 3D supervision model without paired 3D supervision









+ Good per frame performance

— Lacks temporal coherency




Recap: model based 3D human perception

lterative optimization in 2016 o 2 lots of
- 1I( ) H2 priors
o p
% S, R, T !f‘ ==
One-shot inference in 2018 (1 8 |
Con %—’%IB—V M(H,,B)
Complementary! .

Discuss Pros and Cons

Pose
)




SPI N (SMPL oPtimization IN the loop)
[Kolotouros and Pavlakos et al. ICCV 2019]




SPIN [Kolotouros and Pavlakos et al. ICCV 2019]




SPIN is self-improving

Starting from an initial set of fits, our method can improve them.

(IS ¥ STy e ) | [ R | AR S
1 weta e =T, (U or i T el etk '_i‘&}-vﬂ,;‘ N s S angee
AT e oA e S N AW T S Se TS

BRI 2SS P s SELNED S

Initial fit Final fit



SPIN results

—
o | ! ¢

+ Much better per frame performance
— Still lack temporal coherency
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SMPL-X model

SMPL-X estimated independently on each frame



Model fitting Egg;kgglzt al.

Objective function

E(ﬁ 9 770) Data term N Priors
) ) o '|oints reﬁrolection pose, shape, expression, interpenetration
ORATIOM TiF proPER soccree]  ORATIOM TirproPer soccreel ORATIOM 75 PROPER SOCCER <)

IE PROPER SOCCERS]
(919) 841-9211

IE PROPER SOCCER-S]
(919) 841-9211

IE PROPER SOCCERS]
(919) 841-9211




TODO replace with 4D Humans, HaMeR, SLAHMR



Progress on Human Mesh Recovery — from 2018 to 2023



Human Mesh Recovery (HMIR)

CVPR 2018

Kanazawa, Black, Jacobs, Malik




Human Mesh Recovery 2.0

ICCV 2023

Goel, Pavlakos, Rajasegaran, Kanazawa*, Malik*, ICCV 2023

Per-frame estimation — no smoothness applied

Color = Identity



Human Mesh Recovery 2.0

ICCV 2023
Goel, Pavlakos, Rajasegaran, Kanazawa®*, Malik*, ICCV 2023

Per-frame estimation — no smoothness applied

Color = Identity



Human Mesh Recovery (HMR) 2018

s, R,T FZ
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Camera
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3D Regressi
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Kanazawa, Black, Jacobs, Malik, CVPR



Recipe: Big Model and Big Data

Before Ours
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per-frame estimation - no smoothness applied
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Recipe: Big Model

HMR 2.0
@ ©
v\y =
O
» )
: -
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O
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Input Image /
69 Pose
SMPL Que ~__ Transformer
Token Y w/ Cross Attn MLP » 5 Shape

(s Camera



Number of images

10k
"y,

Recipe:

GT annotated
single-room

| 300k |
70k 100k
4° t/
[‘fﬂ/p 076/7 >

Big Data

Automatic dataset labelling
ORATION

ORATIOM 77 PROPER SOCCER-SI
(919) 841-9211

Optimize

Priors:
Pose + Shape

Joint Reprojection
onto keypoints

ORATIOM 777 PROPER SOCCER-SI
(919) 841-9211

Tr Camera

2D Keypoints

Finally, distill into a network!

POPER SOCCERS|
J) 841-9211




ADHumans: HMR2.0 & PHALP++

Tracking

Frame t+1

HMR 2.0

A
A
HMR 2.0 HMR 2.0

H Pose
HMR
20 ﬁ Shape

7T Camera

Input Image SMPL Parameters

I
I
I
I
I
I
I
s I
I
I
I
I
I
I
I
I

Associate using pose*, location, appearance 110
Rajaseqgaran et al. “PHALP”. 2022









HMR 2.0
oo’

RGB Input o




RGB Input

Per-frame
g estimation
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George Pavlakos

CVPR 2024
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Sign Language




Animation




Hand Gestures

ITALIAN|HAND GESTURE:
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ITALIANHAND'GESTURE:

Left hand
Top view




Caveat: Local Pose

Camera View Side View




Decoupling Human and Camera
Motion from Videos in the Wild

N

Vickie Ye Georgios Pavlakos Jitendra Malik Angjoo Kanazawa

CVPR 2023

UC Berkeley
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UNIVERSITY OF CALIFORNIA






Results from SLAHMRI!! [Ye et al. CVPR 2023]
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Modeling camera motion

D)

running in the 3D world




world
{ P} Tracked People
{R7 OéT} in W8ddlddame
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SLAHMR: Simultaneous Localization and Human Mesh
Recovery



Key signal: Motion Prior
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Recover World that gives most probable motion

A data-driven motion prior: HUMoR [Rempe et al. ICCV 2021]




Input View ~ SLAHMR, Input View E

SLAHMR, Top View SLAHMR, Side View




Input View

SLAHMR, Input View




Comparisons
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Comparisons
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4D Reconstruction



_ulk
lon

3D (x,y,t) observat 4D (x,y,z,t) state

=

A" 5 S
E



Prereq: tracking people across time

PHALP: Rajasegaran, Pavlakos, Kanazawa, Malik, CVPR 2022 (Oral)



* In 2D, occlusion is hard to disambiguate

148



* In 2D, occlusion is hard to disambiguate

149



* In 2D, occlusion is hard to disambiguate

150



* In 2D, they overlap, but in 3D they don't!
O

151



* In 2D, they overlap, but in 3D they don't!

152



* In 2D, they overlap, but in 3D they don't!

153



_ _ Association
Side view

o

- _ 3D location 3D appearance 3D pose

PHALP: Rajasegaran, Pavlakos, Kanazawa, Malik, CVPR 2022 (Oral)




A benefit of video: Dynamics




Auto-regressive prediction of 3D motion from video

Input Ground Predicted Different
Video Truth Future Viewpoint
Video 2

Chpei I £
e A ;
2.\ a3 -
y R = A
NG

Predicting 3D Human Dynamics from Video, Zhang, Felsen, Kanazawa, Malik, ICCV 2019



Test Time

Input Ground Predicted Different
Video Truth Future Viewpoint
Video



Overview
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Autoregressive Prediction (Latent Space)

Movie strips

Input image
sequence

time
\ 4

P-r
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= Conditioning
Blue = Future Prediction from movie strip

Camera View Alternate Viewpoint



= Conditioning
Blue = Future Prediction from movie strip

Camera View Alternate Viewpoint



= Conditioning
Blue = Future Prediction from movie strip

Camera View Alternate Viewpoint



Finally, a step towards this baby




" BAm

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

STV: Reinforcement Learning
of Skills from Videos

Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, Sergey
Levine




Perception is not the end of the story

Perceiving the 3D pose Actuating the muscle to get to the pose

Q\ Biceps
\l . ‘ \ Tightened
| Biceps
relaxed & -
Triceps Triceé :

tightened relaxed




Control is not easy!




Past work on start from mocap




Deep Reinforcement Learning Based Motion Imitation

Reinforcement
Learning

Reference Motion

In simulation (Mocap)

LNly a
Need Actions recording of
joint angles

DeepMimic [Peng et al. SIGGRAPH 2018]



Expand the world to video

JUMPING JACKS

i
GIGOSEI ) Cat (CKSUE

2 YouTube




Learning Dynamic Skills from Videos

Video Temporally smooth mesh recovery



Use recovered 3D pose to train a physically simulated agent

=
B




Train Atlas (169kg)

o ) S, e




Environment Retargeting




Robustness




Humanoid: Cartwheel

Video Recovered 3D Body




Humanoid: Kip-Up

» . . “‘ .\ -
PR, v Vvt

Video: Kip-Up




Atlas (169kg) : Handspring

Video: Handspring A



Atlas: Vault

Video: Vault Policy



Atlas: Dance




Failure Cases

Recovered 3D Body
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