Perceiving Humans

Angjoo Kanazawa

CS280

March 31, 2025

Logistics

- Today: 2D/3D Humans
- HW3 up on keypoint detection
- Wednesday: Jitendra
- Next Monday: Learning to predict correspondences
 - \rightarrow Released papers for you to read in advance on Ed
- Today after class project proposal

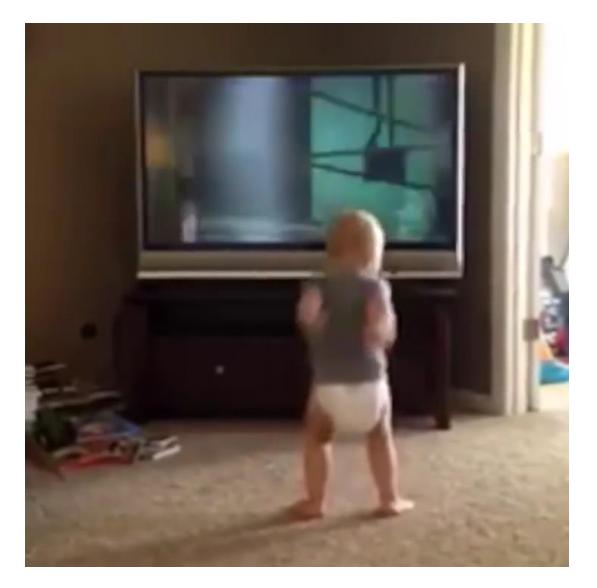
Perceiving Humans

From Recognition to Detection to Reconstruction

Why perceive humans?

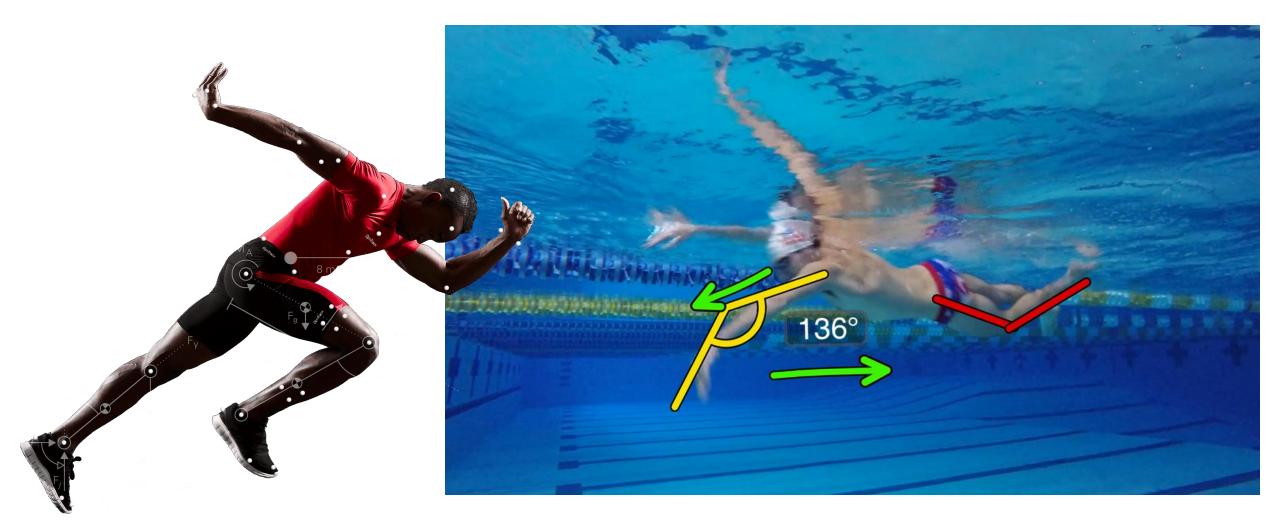
• Well they are the most important thing

Learning to act from visual observation



Anticipating human behavior

Sport analysis



OptiTrack

MySwimPro

Medical diagnosis and treatment

Challenges Why is perceiving humans hard?

variation in appearance

occlusion & clutter

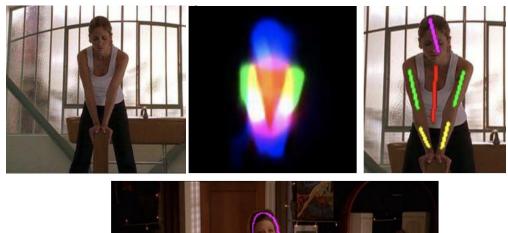
variation in pose, viewpoint

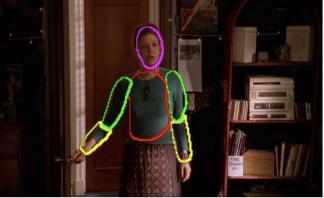
Slide Credit: Deva Ramanan

2D Humans

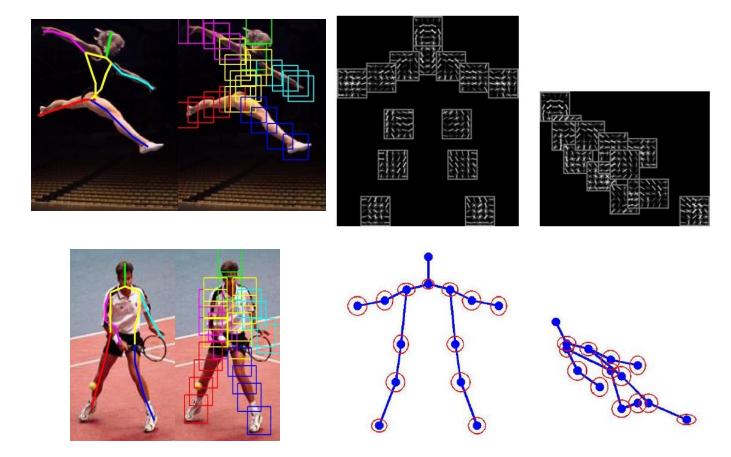
Mask RCNN. He et al. ICCV 2017

Parts develop finer into joints & keypoints





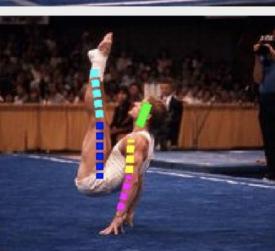
[Ferrari, Marín-Jiménez and Zisserman CVPR '08]



Articulated Human Pose Estimation with Flexible Mixtures of Parts [Yang and Ramanan CVPR '11]

Datasets are introduced

Leeds Sports Pose (**LSP**) [Johnson and Everingham, CVPR '11]

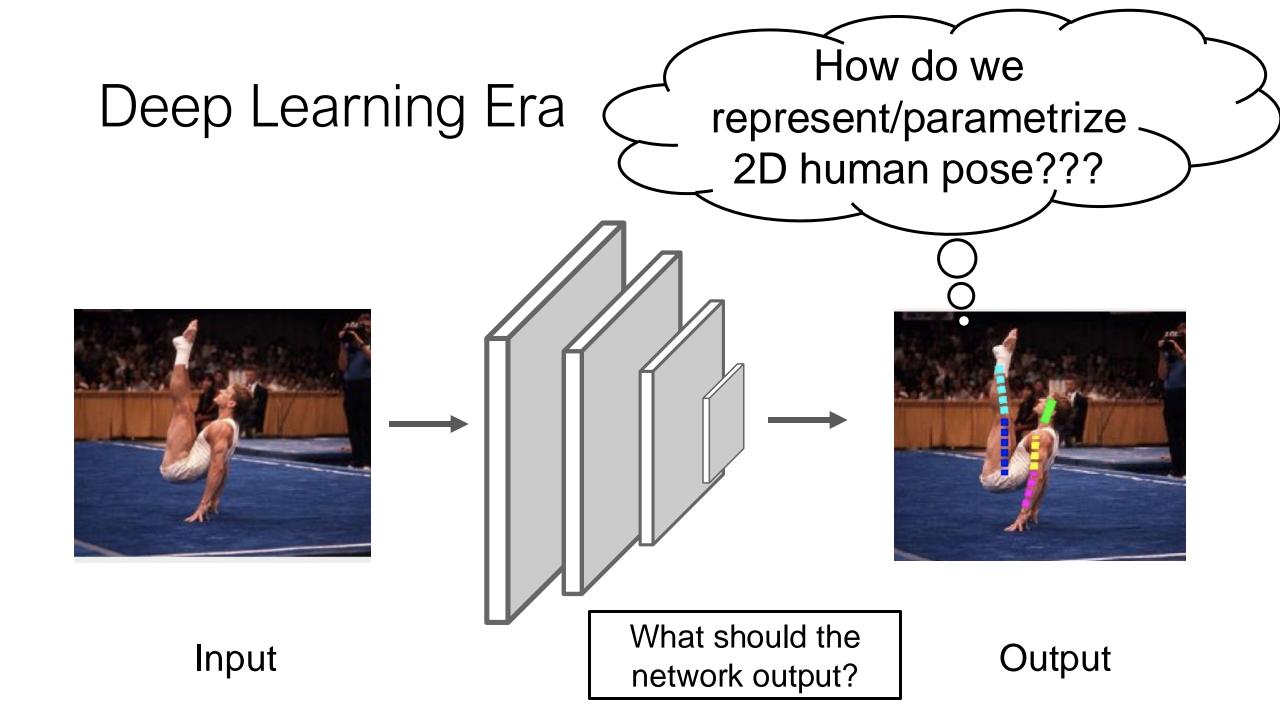


11000 Train

1000 Test

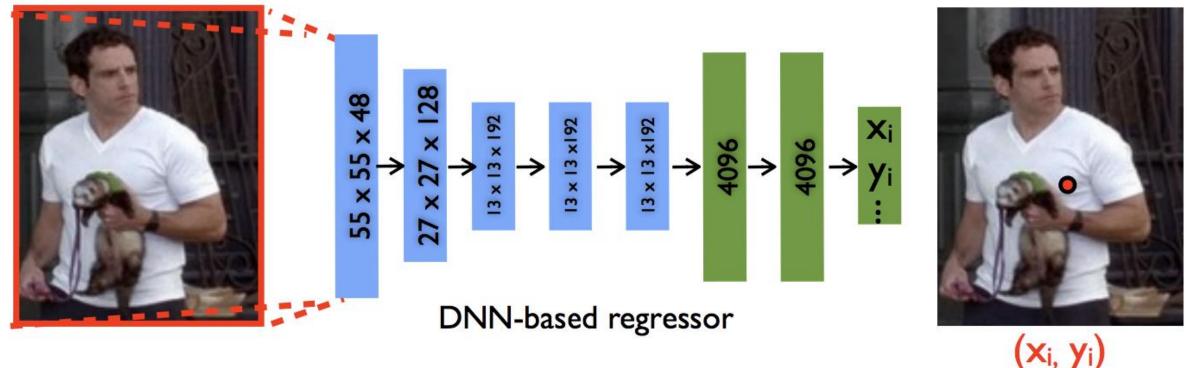
Frames Labeled in Cinema (FLIC)

4000 Train 1000 Test



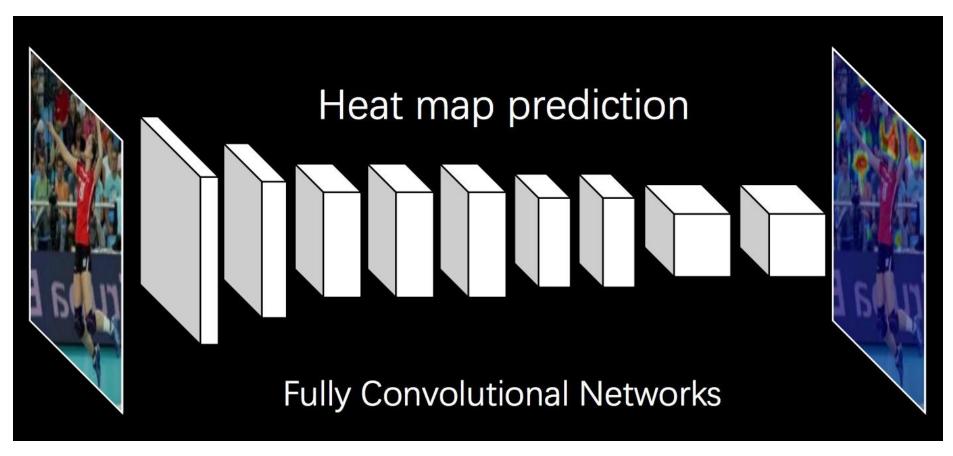
Predicting keypoints

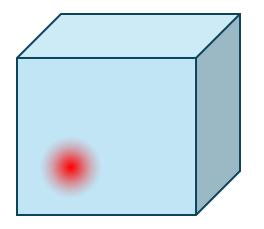
220 x 220



DeepPose: Human Pose Estimation via Deep Neural Networks [Toshev and Szegedy 2014]

Predict heat maps





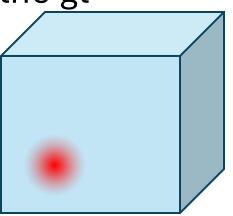
Target: K+1 x H x W Gaussian around (x,y) for k-th keypoint in the k-th channel

K+1 for K parts + background

L2 Training Loss

 L2 loss on the target heatmap (peaky gaussian around the gt keypoint)

$$L = \sum_{k=1}^{K+1} \sum_{(x,y)} ||b^k(x,y) - b^k_*(x,y)||$$



Target "belief map" : K+1 x H x W Gaussian around (x,y) for k-th keypoint in the k-th channel

Log Loss Training Loss

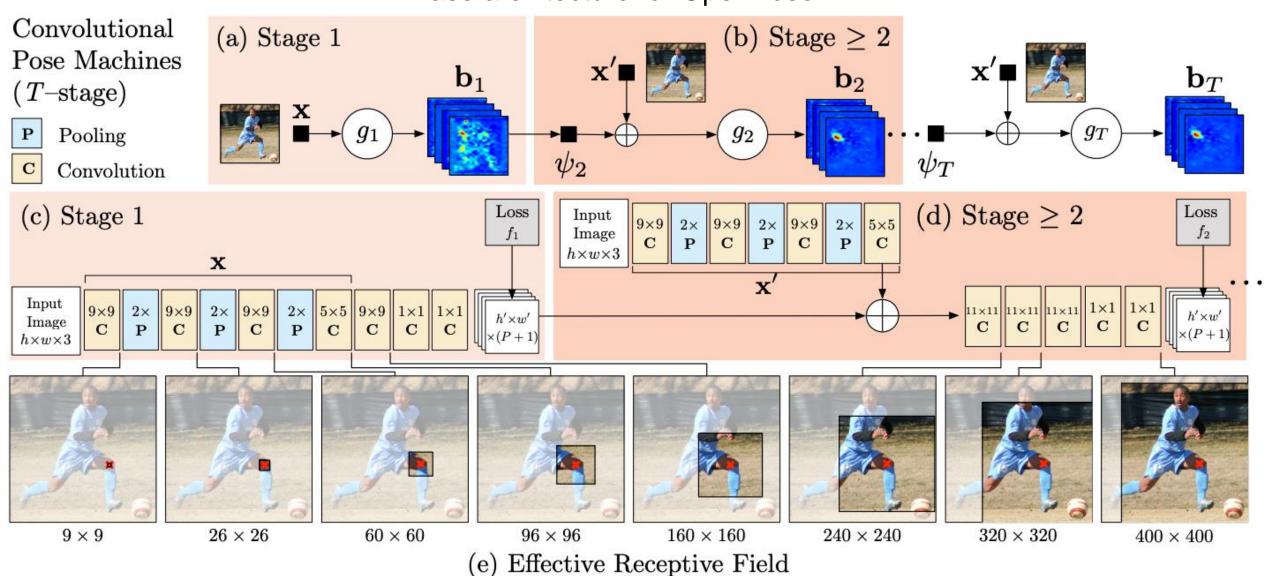
- Log loss (or cross entropy loss) on the target heatmap probabilities
- The target must also sum to 1
- Mask RCNN just uses 1 at the target, 0 everywhere else.
- Experiment



Target "belief map" : K+1 x H x W 1 at Grount truth location (x,y) for k-th keypoint in the k-th channel

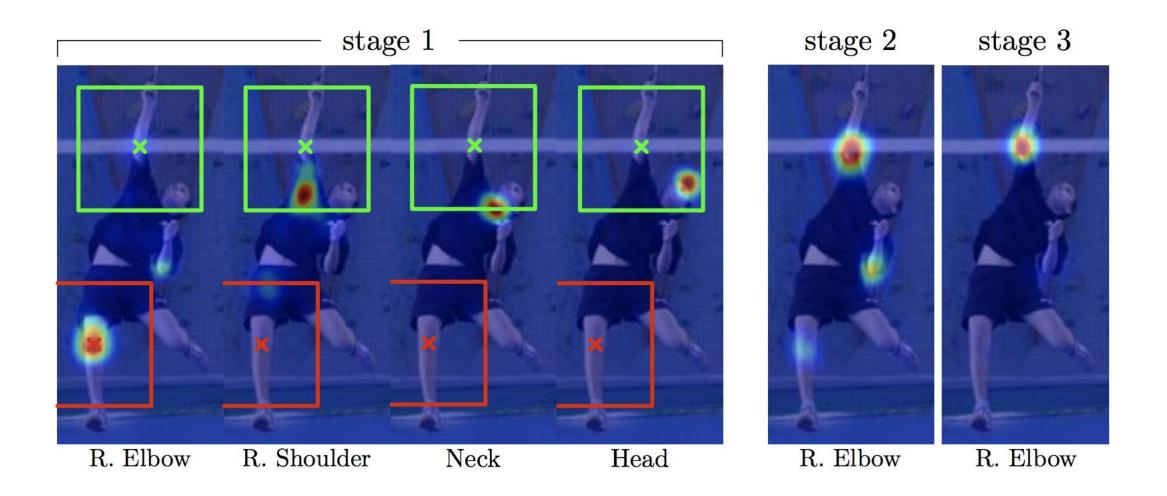
[Wei et al CVPR 2016]

Convolutional Pose Machines Base architecture for OpenPose



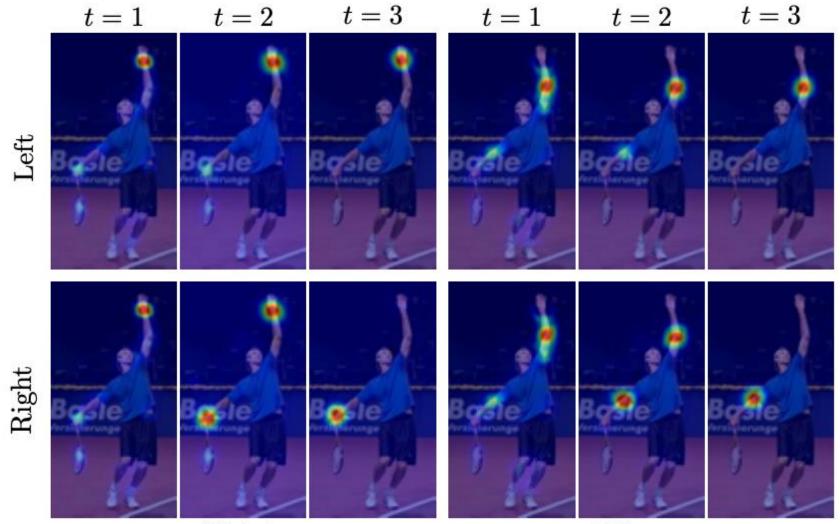
[Wei et al CVPR 201

Convolutional Pose Machines



[Wei et al CVPR 2016]

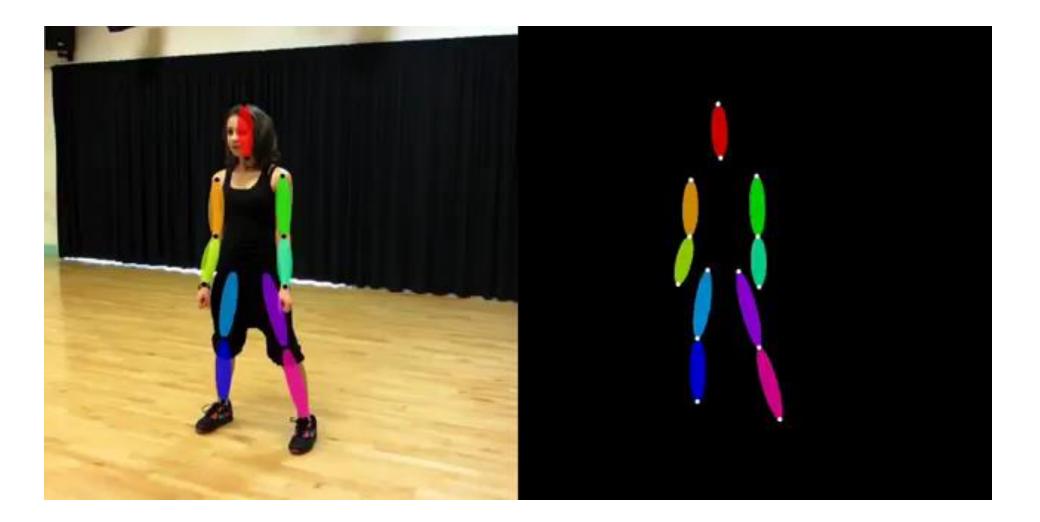
Convolutional Pose Machines



Wrists

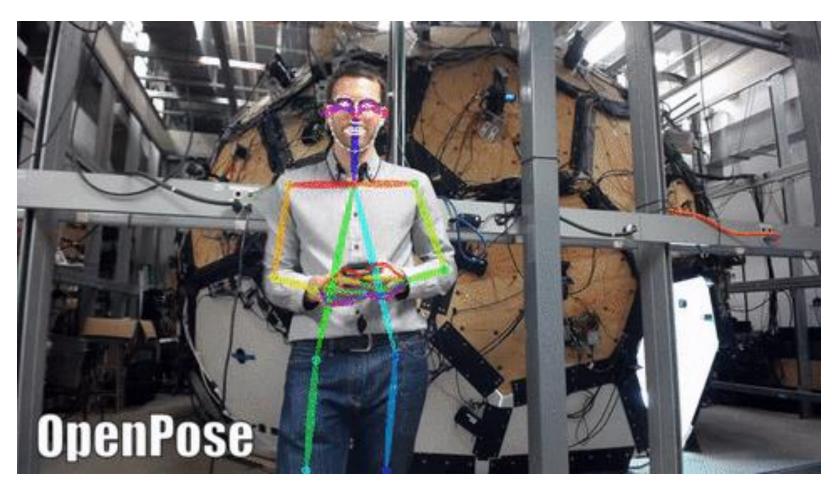
Elbows

Results



OpenPose

Great opensource tool, builds on convolutional pose machine architecture, adapted to multiple people

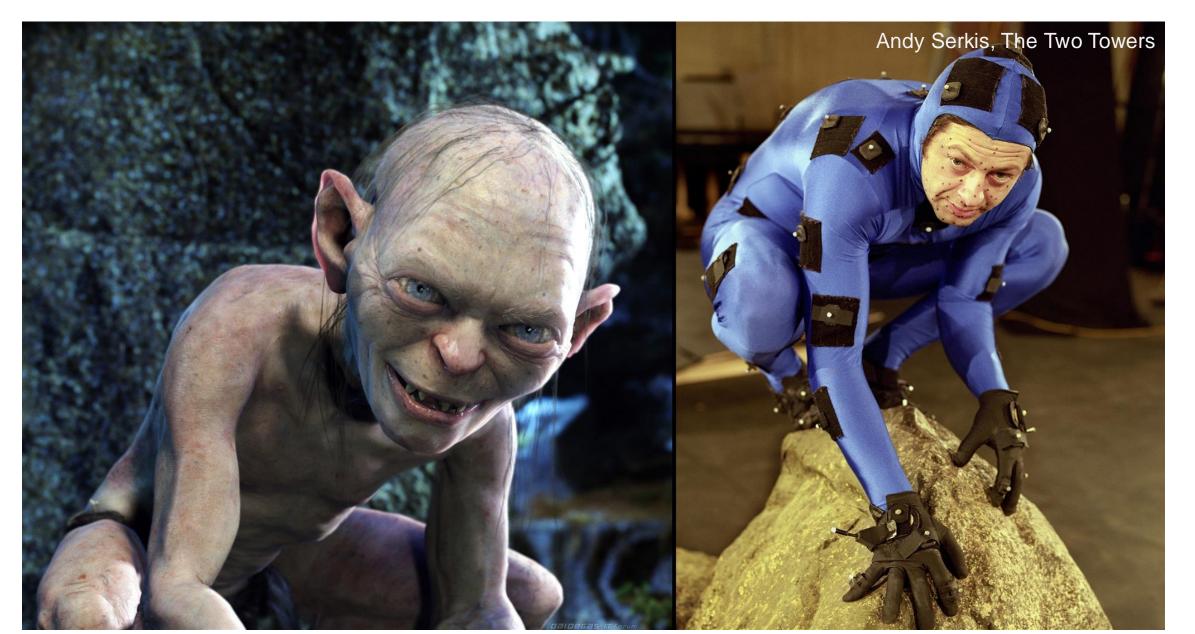


Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, Yaser Sheikh '16-17

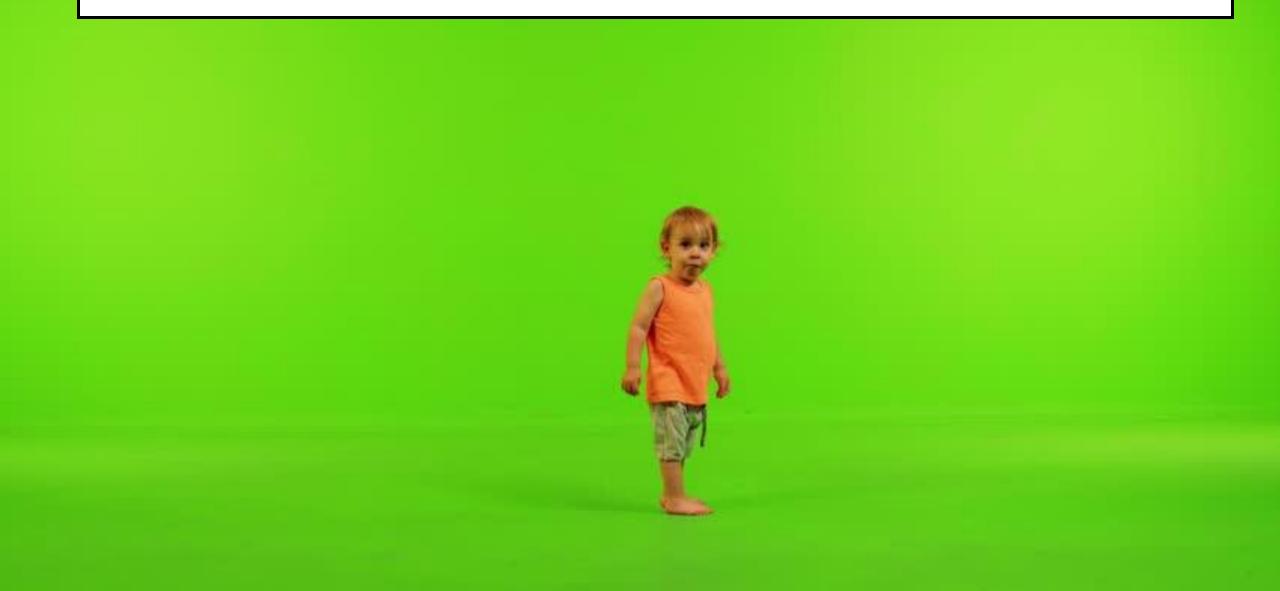
Are we done?

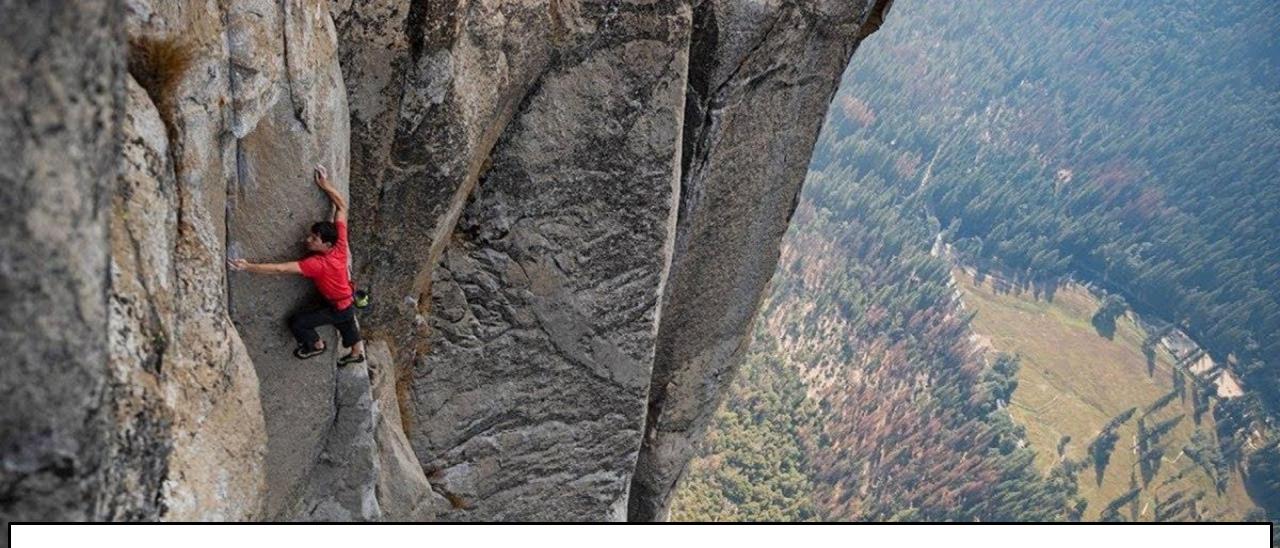
Humans live in a world that is 3D and dynamic.

Today's Non-rigid 3D Solution: Motion Capture



The world is so much more than greenscreen!





Goal: 3D perception from images *"in-the-wild"*

Single-View 3D Human Mesh Recovery



[Bogo*, Kanazawa*, Lassner, Gehler, Romero, Black ECCV '16]

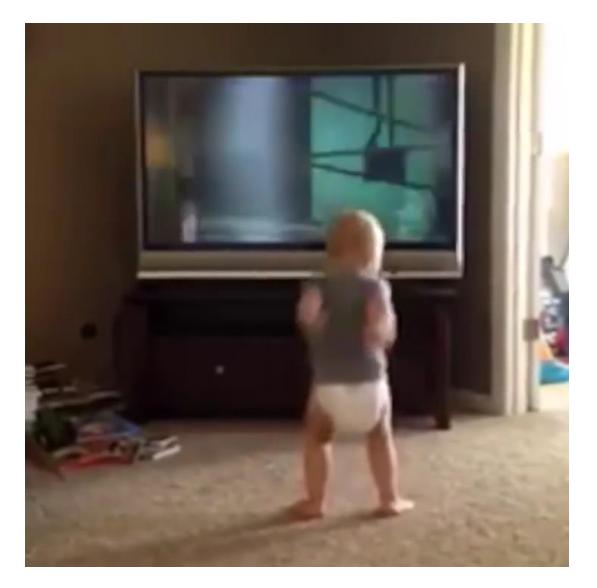
In everyday photos

Kanazawa, Black, Jacobs, Malik. Human Mesh Recovery, CVPR 2018

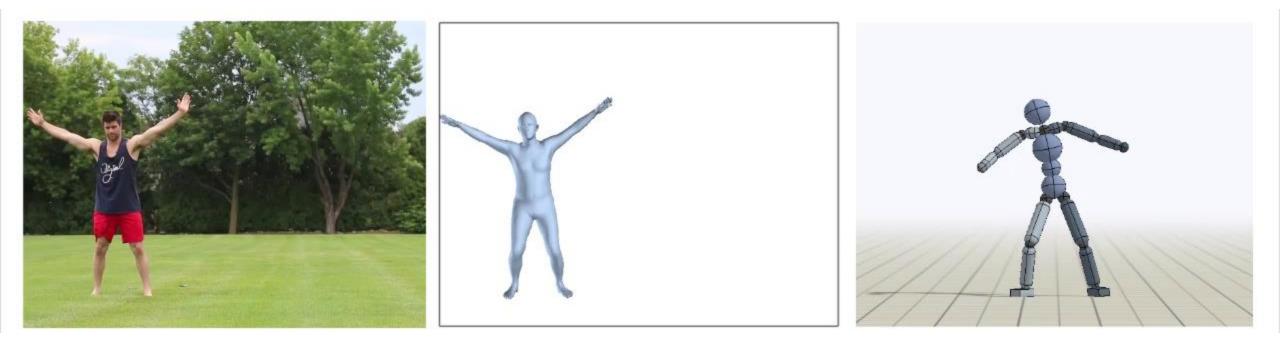
Or from Video

Kanazawa, Zhang, and Felsen et al. CVPR 2019

Learning to act from visual observation



From video...



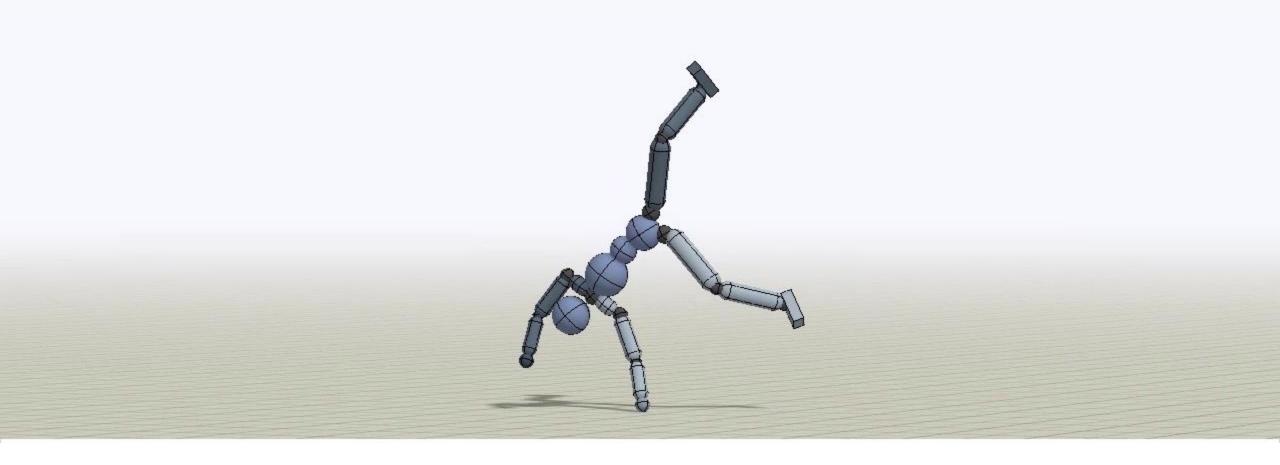
Video

Recovered 3D Body

Policy

Peng, Kanazawa, Malik, Abbeel, Levine "SFV: Reinforcement Learning of Physical Skills from Videos", SIGGRAPH Asia 2018

Animate Virtual Characters

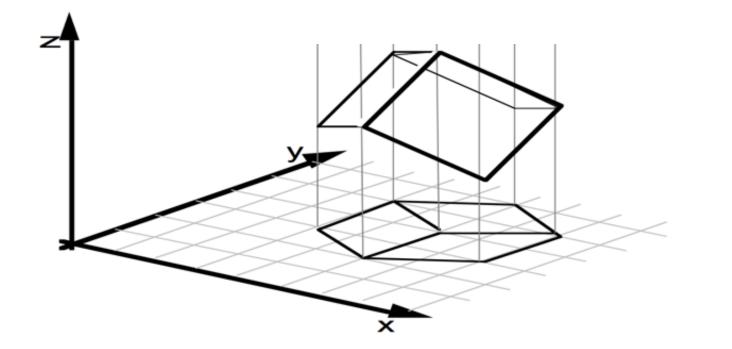


Human 3D perception

We perceive 3D, but computers only see 2D dots!!

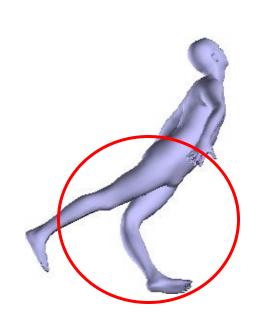
Johannson experiment, James Maas, 1971

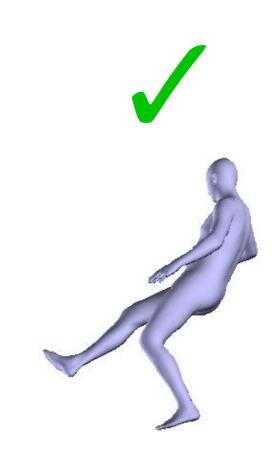
3D from 2D is inherently under-constrained



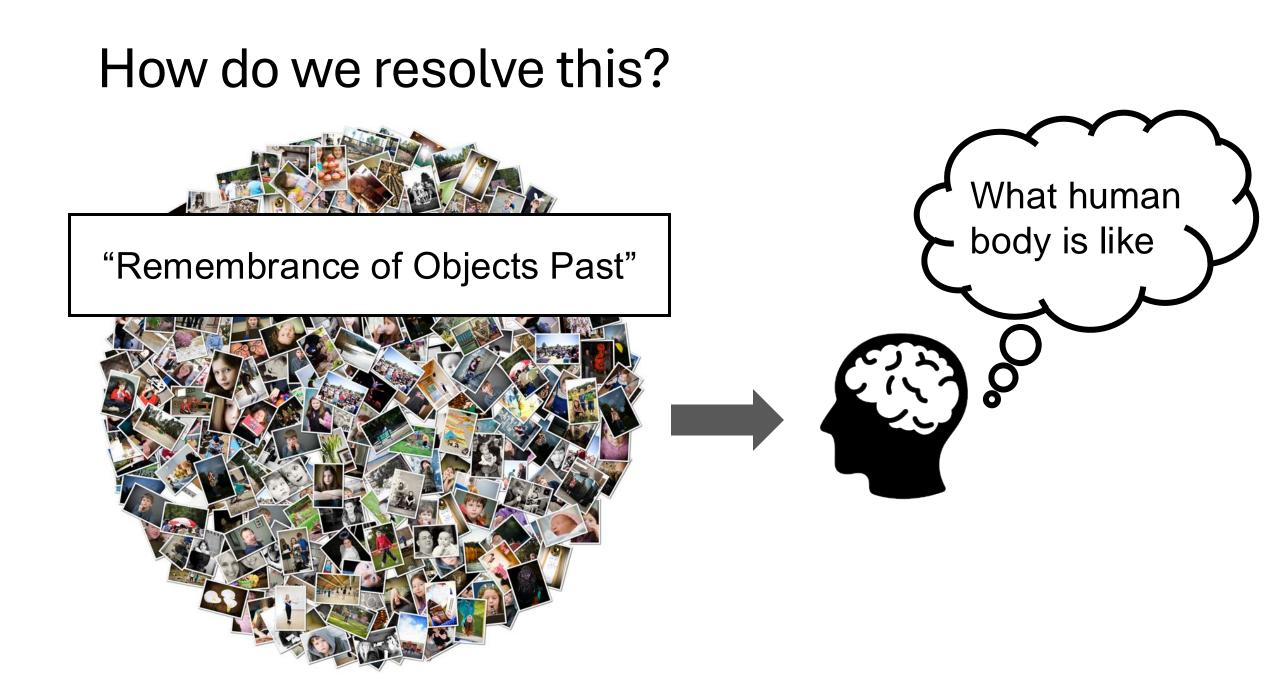
[Sinha and Adelson '93]

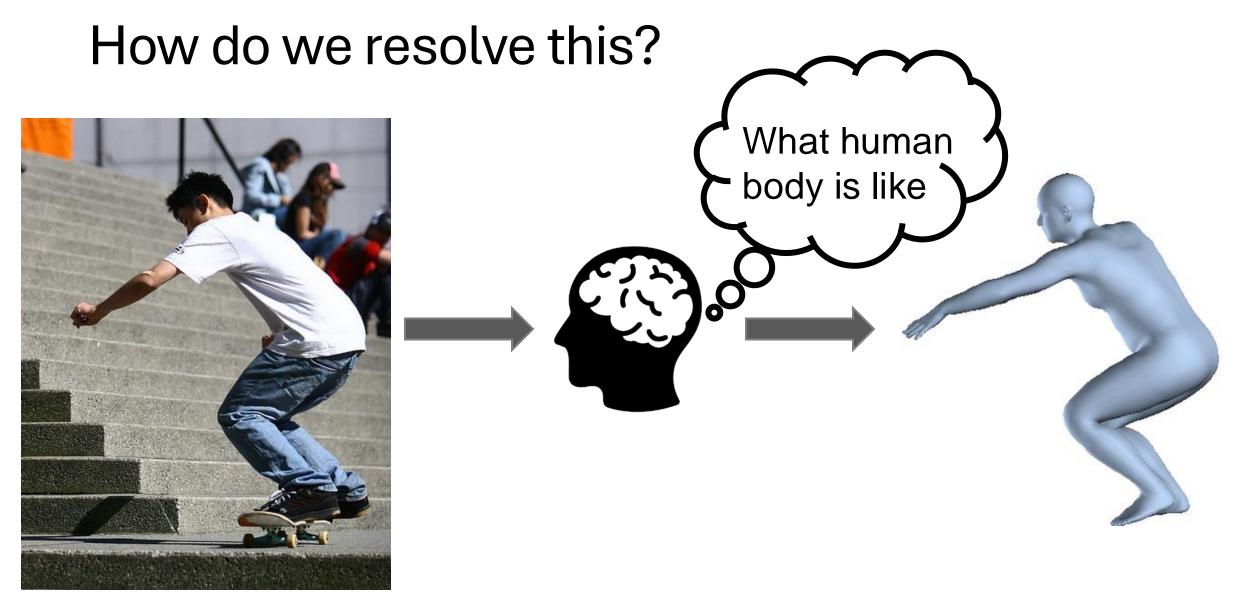
How do we resolve this?





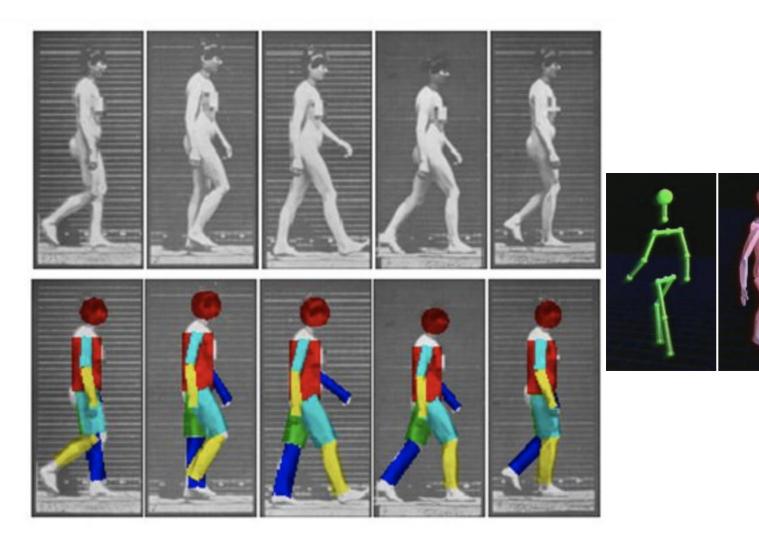
[Bogo and Kanazawa et al. ECCV '16]





[Kanazawa et al. CVPR 2018]

Bregler and Malik CVPR 1998

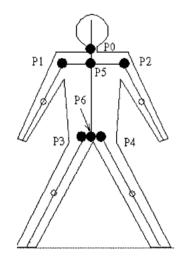


Tracking based:

- 1. Initialize 3D model in first frame
- 2. Track parts in next frames via Lukas-Kanade, over joint angles

More stable with 2 views

And many more model-based methods

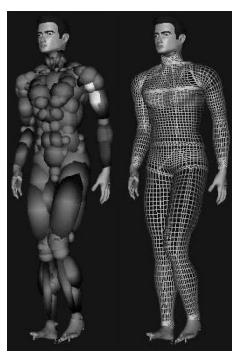


[Leung and Yang '95]

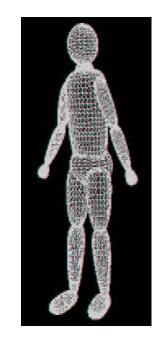
[Terzopoulos and Metaxas '93]



[Kakadiaris and Metaxas '00]



[Plänkers and Fua '01 1



[Sminchisescu and Triggs '03]

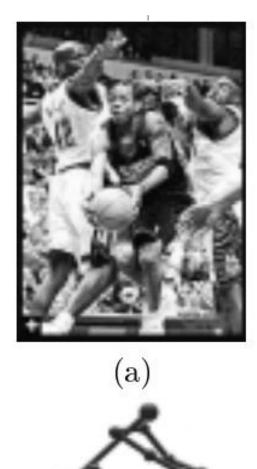
Slide modified from Michael

3D Humans from known 2D joints

sedric.jpeg

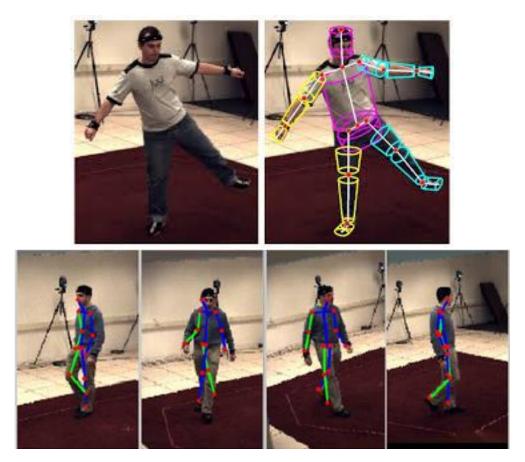
Reconstruction of articulated objects from point correspondences in single uncalibrated image [CJ Taylor CVIU 2000]

Same issue as single-view 3D reconstruction

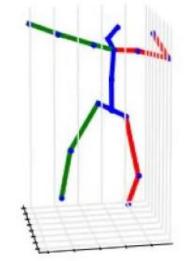


You need priors!! Here: Known ratio of limb length

Datasets



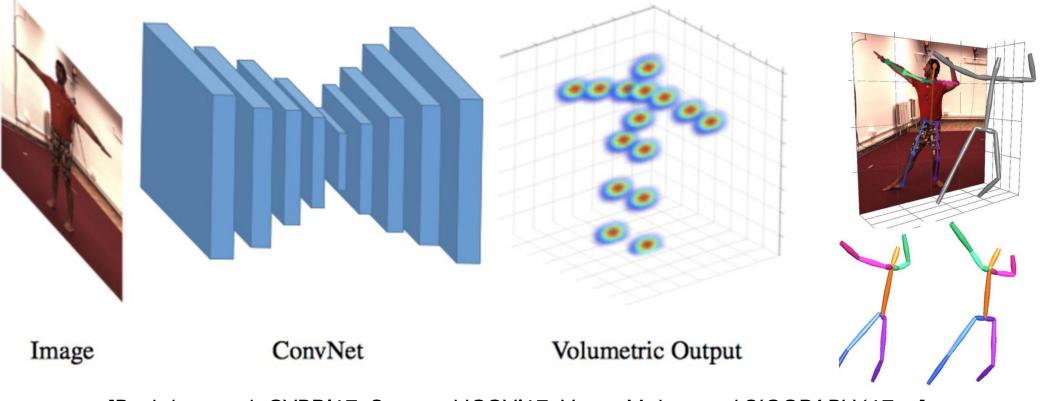
HumanEva [Sigal et al. IJCV 2010]



Human3.6M [lonescu et al. 2014]

Deep Learning based approaches

Lots of activities + progress made in this area after datasets

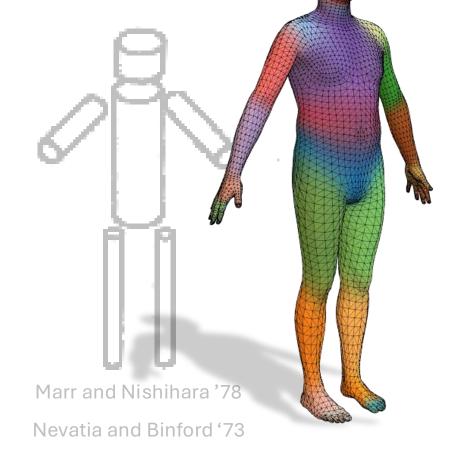


[Pavlakos et al. CVPR'17, Sun et al ICCV'17, Vnect Mehta et al SIGGRAPH '17 ...]

What about the 3D representation?? Are we all just stick figures?

To do more than joints, we need to discuss how to model human bodies

What is the right level of abstraction?

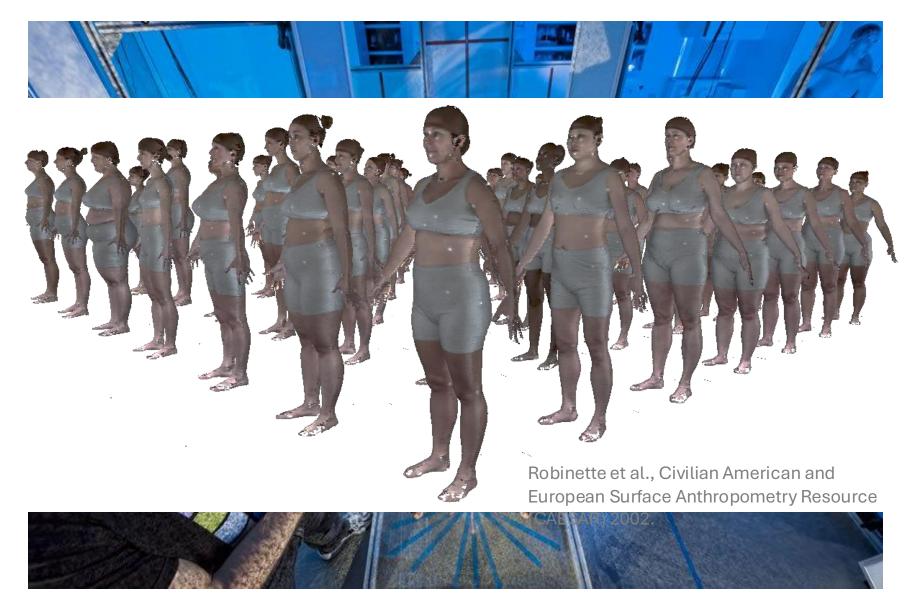


Practical and popular answer has been to model what you can see the surface

Lee, Sifakis, Terzopoulos, ToG'09

Slide courtesy of Michael Black

Humans are special



Perceiving Systems, Max Planck Institute

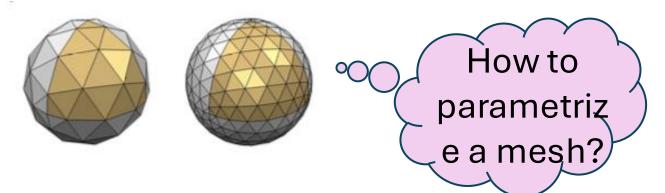
Morphable Model of Human Bodies



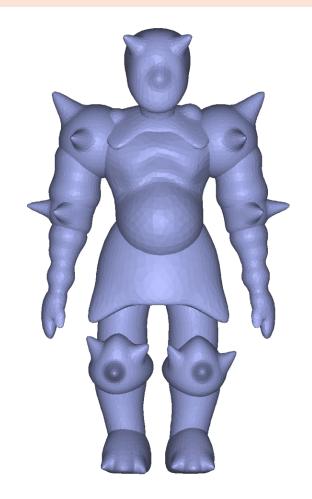
[Loper et al. SIGGRAPH Asia '15]

How to represent surfaces?

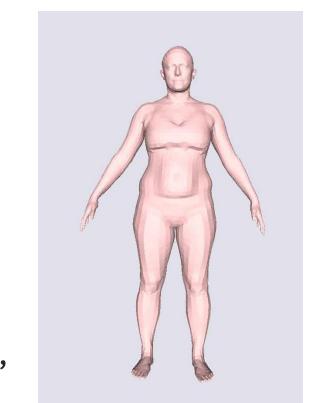
- Meshes are a popular, practical choice for surfaces
- Mesh = {V, F}
 - Vertices: N x 3
 - Faces: |F| x {3, 4, ...} polygons, "triangles"

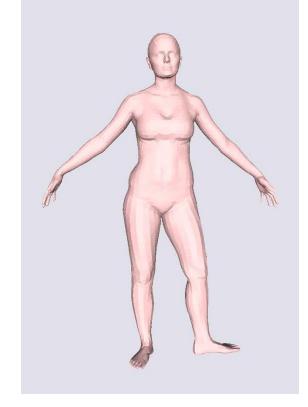


We need a lowdimensional parametrization!!



Key in modelling 3D Human Surfaces: Factorization into Shape and Pose





"Identity"

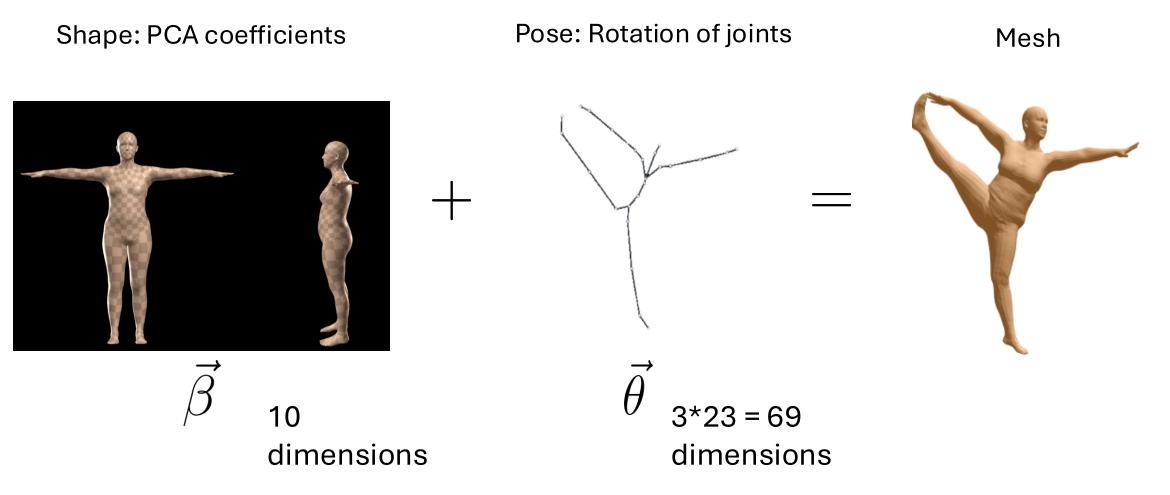
Individual Shape Variation

[SCAPE: Anguelov et al., SIGGRAPH '05]

Pose changes (Articulation)

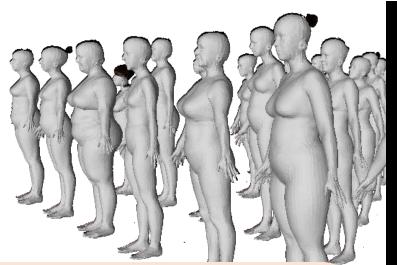
Figures courtesy of Michael Black

Skinned Multi-Person Linear Model (SMPL)



Learning Shape from 3D Scans

4000 bodies of different shapes in roughly the same pose.

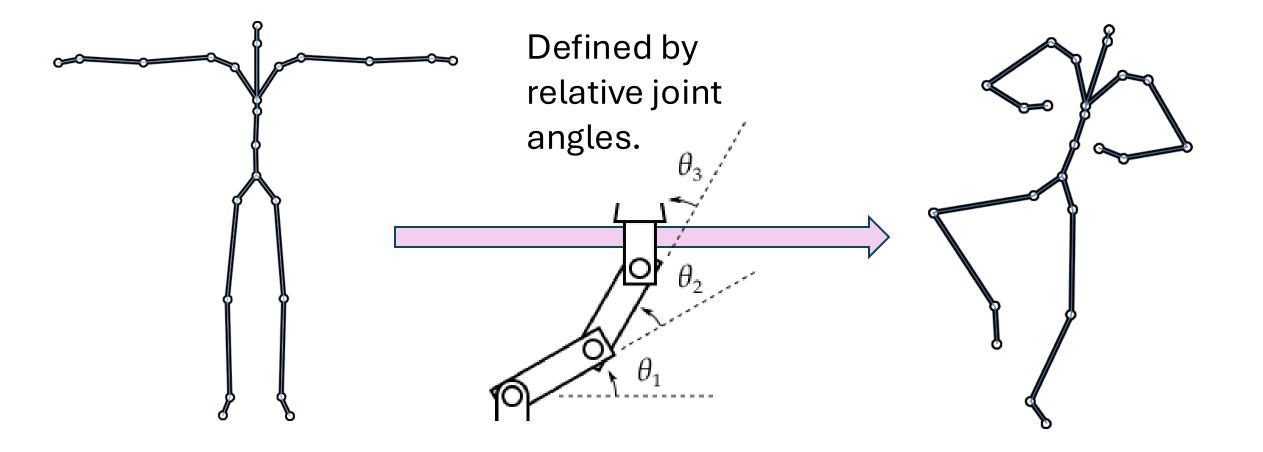


Run PCA on this: Shape = linear combination of basis shapes

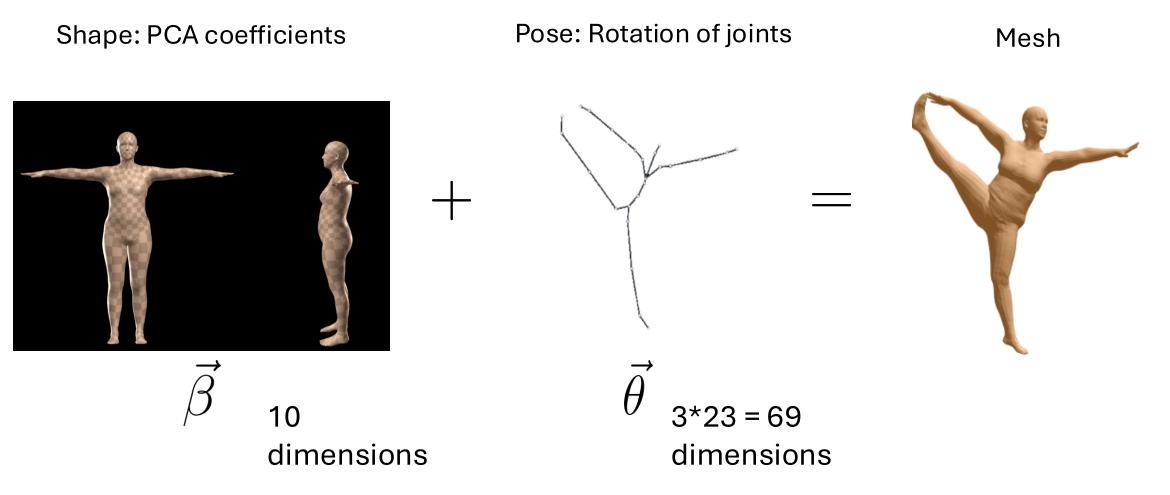


PC 1 varied between +/-3 std dev

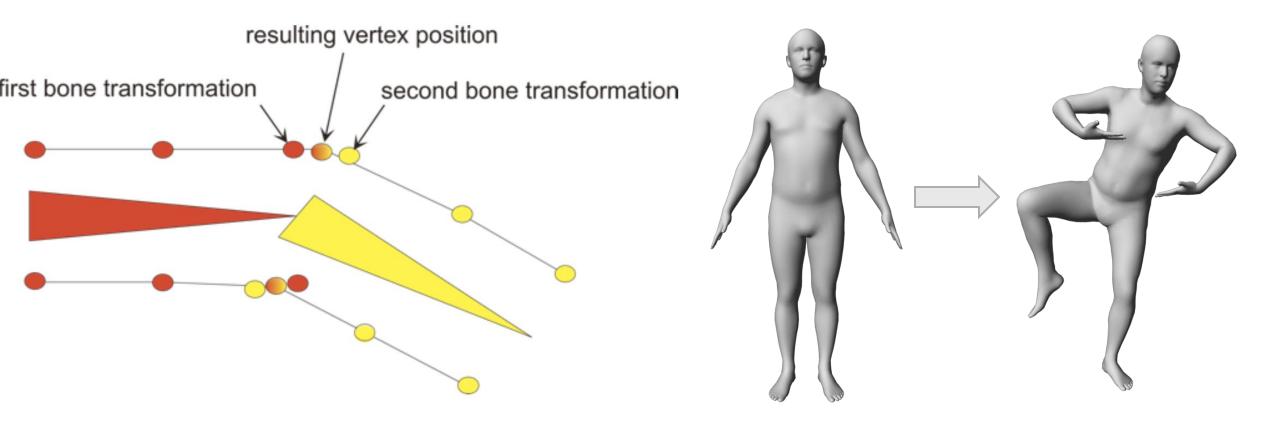
Pose: Forward kinematics on the skeleton tree



Skinned Multi-Person Linear Model (SMPL)



Pose: Forward kinematics on the skeleton tree



Morphable Model of Human Bodies

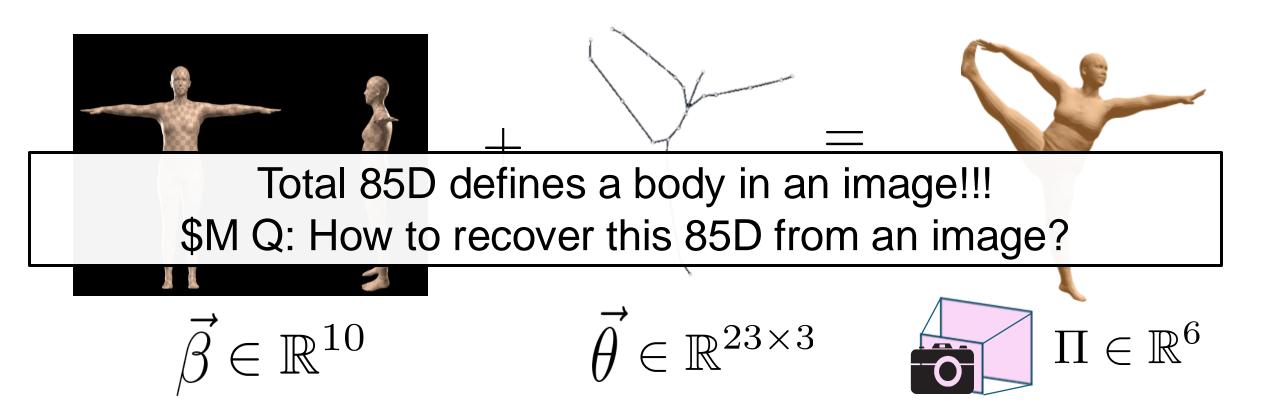


[Loper et al. SIGGRAPH Asia '15]

Morphable model for humans

Shape: low-D subspace

Pose: 23 Joint Rotations Mesh



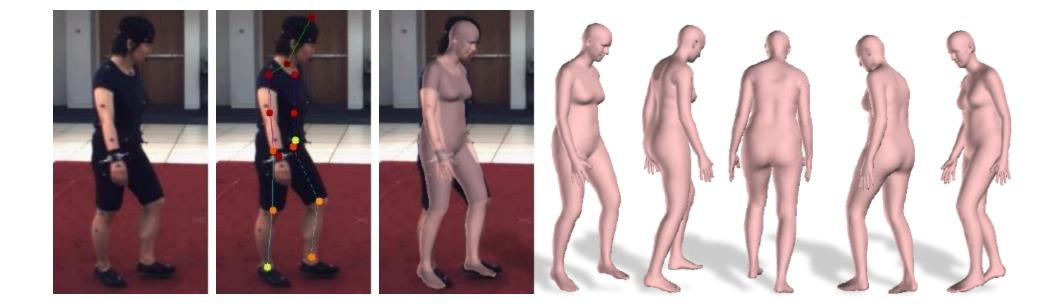
Skinned Multi Person Linear (SMPL) model [Loper et al. SIGGRAPH ASIA '15]

Back to images... 3D Shape and Pose from a Single Image

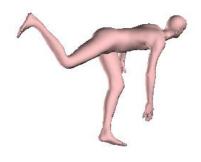
SMPLify [Bogo and Kanazawa et al

Overview: SMPLify

- 1. Automatic 2D joint detection via CNNs
- 2. Fit SMPL pose and shape parameters



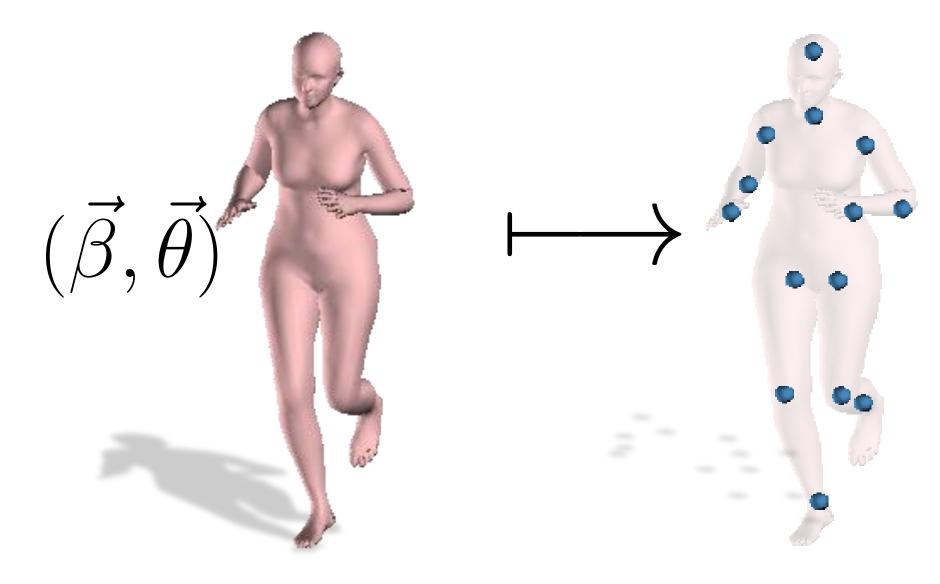
SMPLify Objective Function



camera joints $E(\vec{\beta}, \vec{\theta}, \vec{K}; \vec{J}_{est}) =$

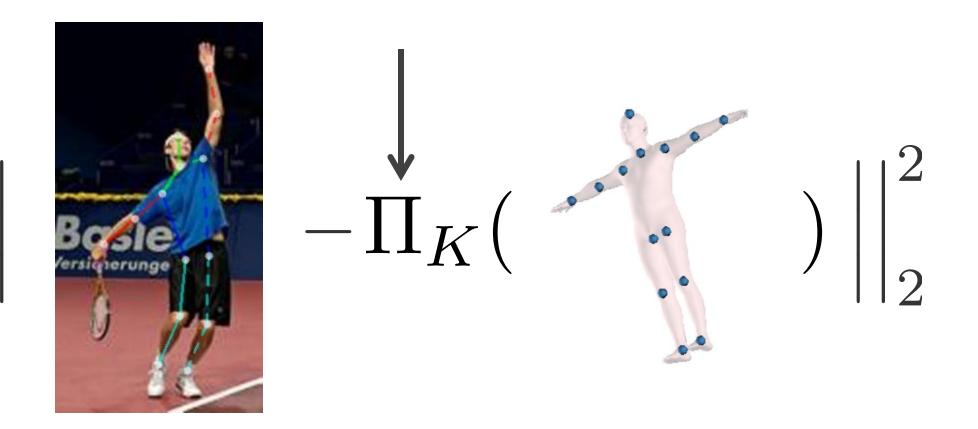
 $E_J(\vec{\beta}, \vec{\theta}, K; J_{est}) + E_a(\vec{\theta}) + E_{\theta}(\vec{\theta}) + E_{sp}(\vec{\theta}, \vec{\beta}) + E_{\beta}(\vec{\beta})$ Data term Priors

Data Term: Joint Reprojection Error



Data Term: Joint Reprojection Error

Camera Projection



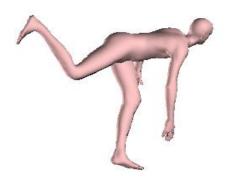
Summary: Fit to 2D joints

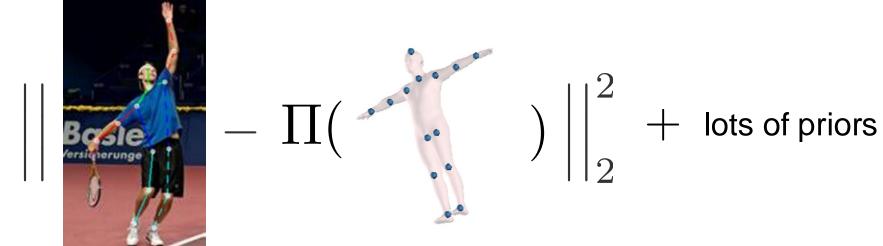
min

 $_{\beta, \theta, \Pi}$

1. Automatic 2D joint detection via CNN

2. Solve for pose and shape that explain the 2D joints





[Bogo and Kanazawa et al ECCV '16]

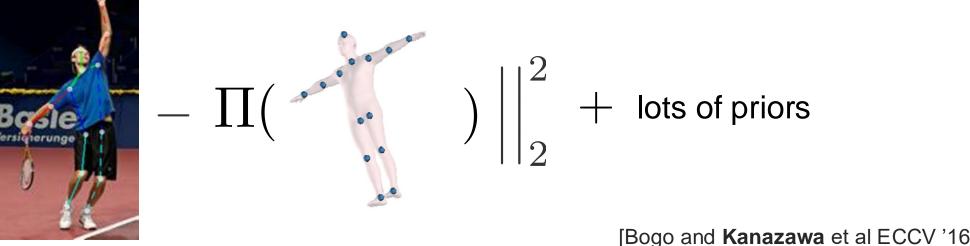
Approach: Fit to 2D joints

1. Automatic 2D joint detection via CNN

2. Solve for pose and shape that explain the 2D joints

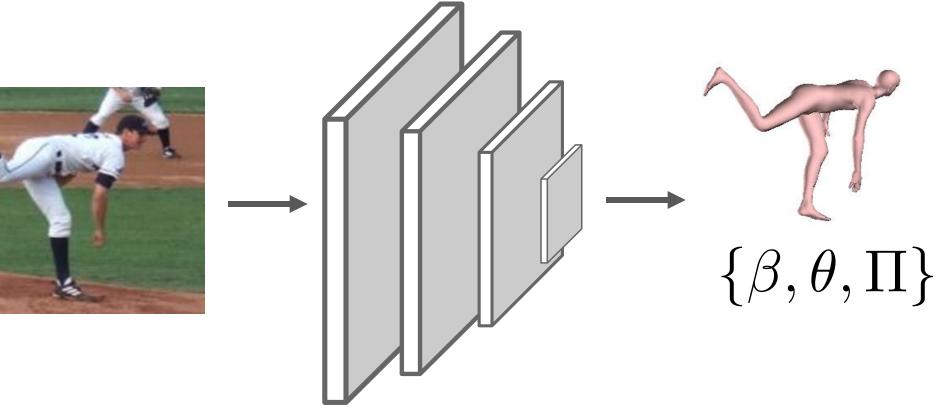
Only looks at 2D joints, not the image Optimization based inference = too slow for video

 $\min_{\beta,\theta,\Pi}$



Why not just throw a deep network at it?

• Image in, 85D human parameters out!!

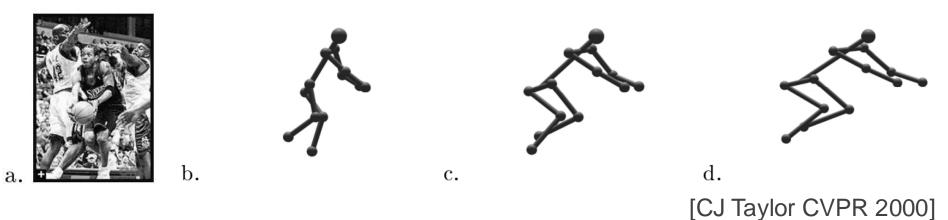


Challenges

1. Lack of real paired 2D-to-3D labels

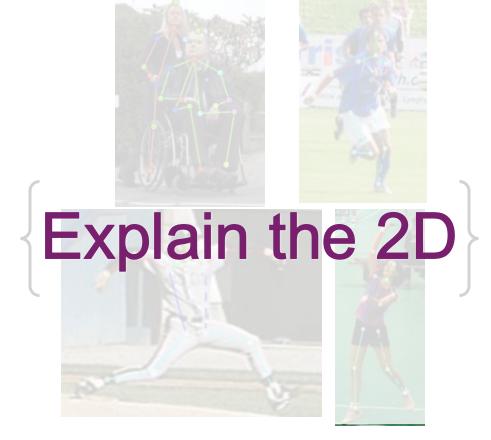
Human3.6M [lonescu et al. PAMI '14]

2. Depth ambiguity



Solution

Even though we don't have paired 2D-to-3D labels, we have a lot of **unpaired** labels

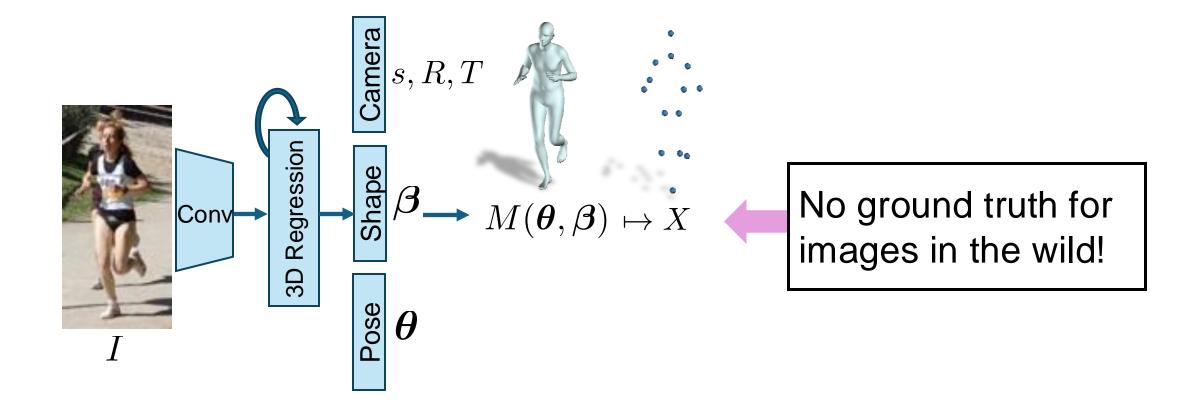


2D Labeled images [LSP, MPII, MS COCO,...] 3D Scans/Motion Capture [CMU Mocap, CAESER, JointLimits..]

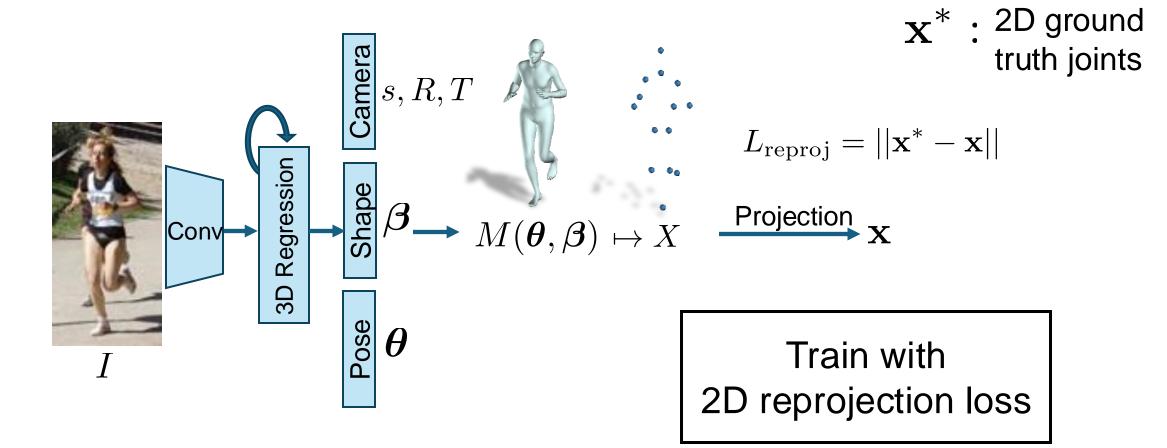
Within this

distribution

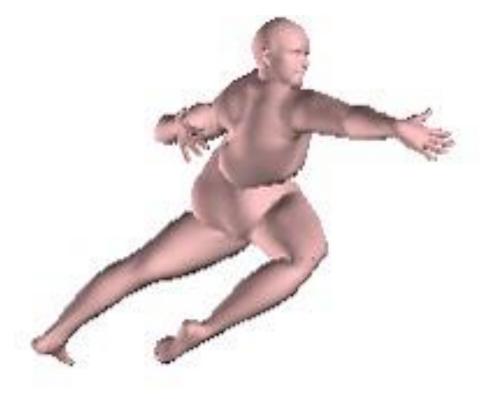
Overview: Human Mesh Recovery (HMR)



Overview: Human Mesh Recovery (HMR)

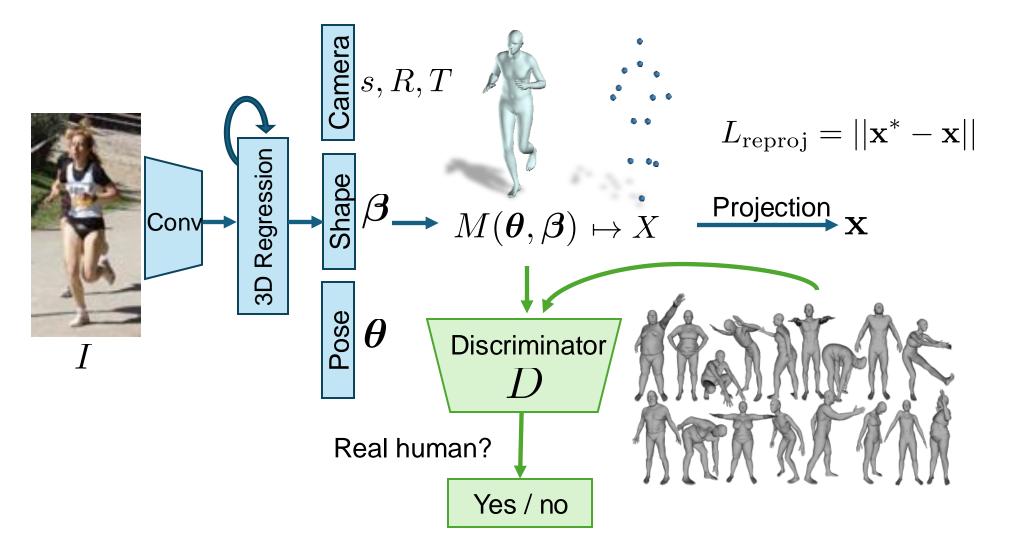


Without any 2D-to-3D supervision...



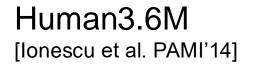
More monsters from training

Overview: Human Mesh Recovery (HMR)

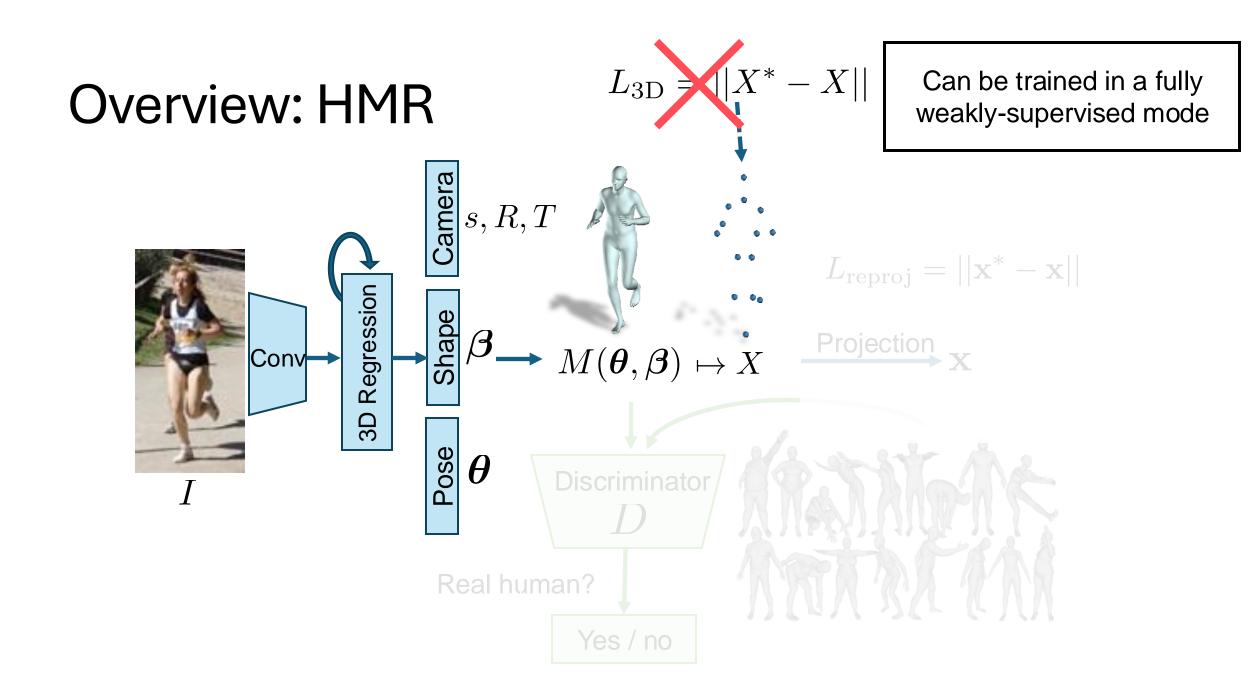


Training Data

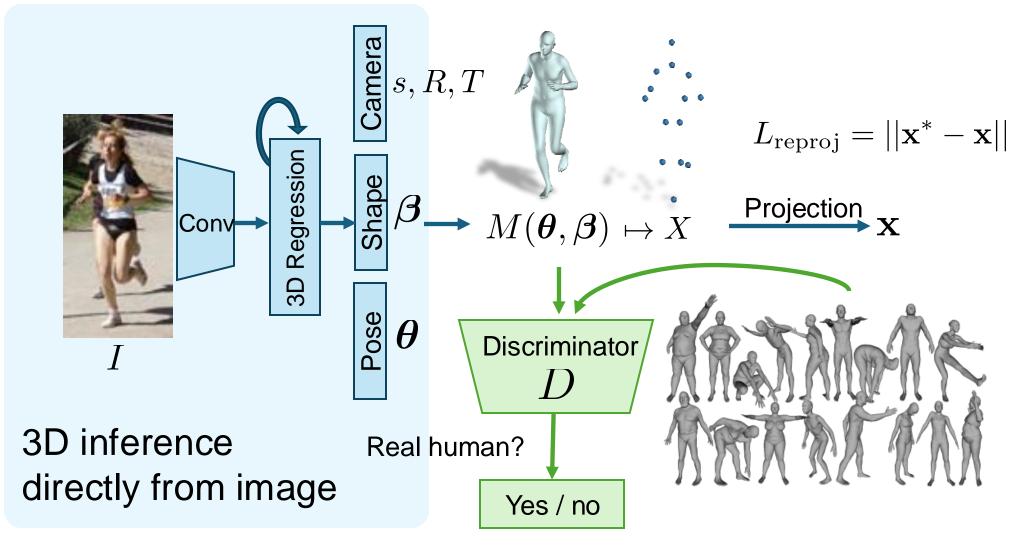
In-the-wild 3D 2D



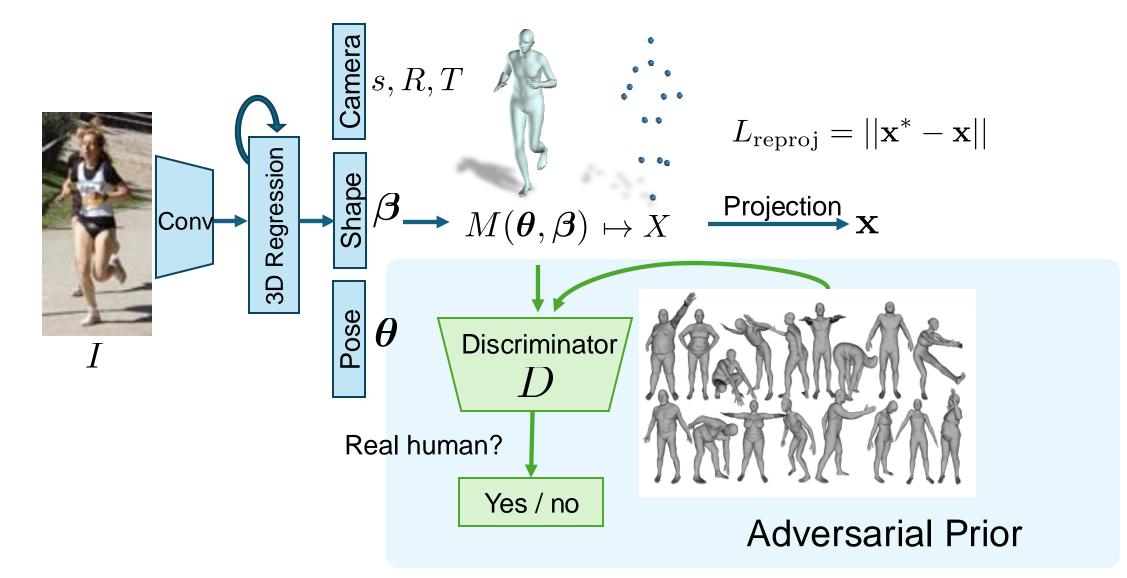
MS COCO [Lin et al. ECCV '14]



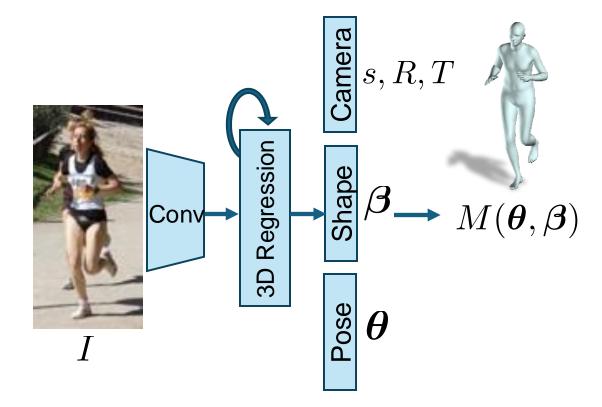
Overview: Human Mesh Recovery (HMR)



Overview: Human Mesh Recovery (HMR)



Test time: just feed forward

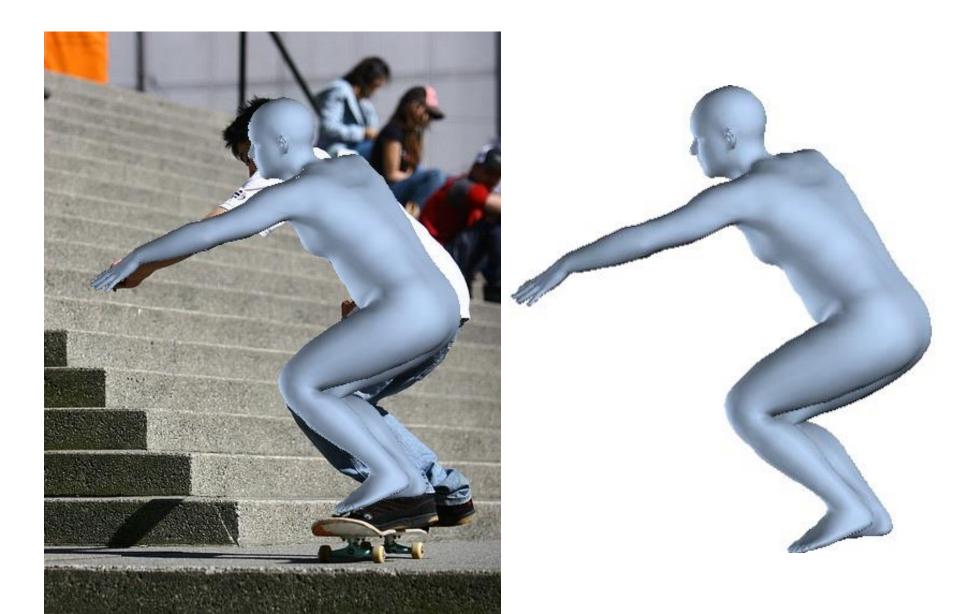


Benefits of recovering a deformable model

Correspondences across recovered bodies (part segmentations)



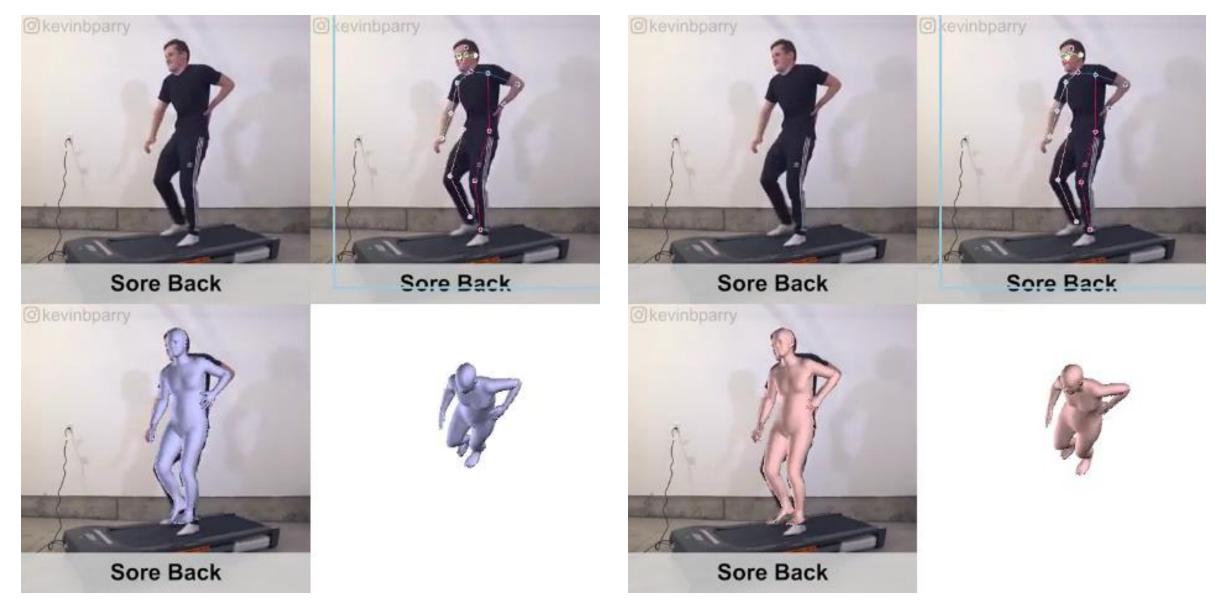
Amodal/holistic prediction



Prediction on occluded body parts

Qualitative results on COCO w/occlusion + clutter





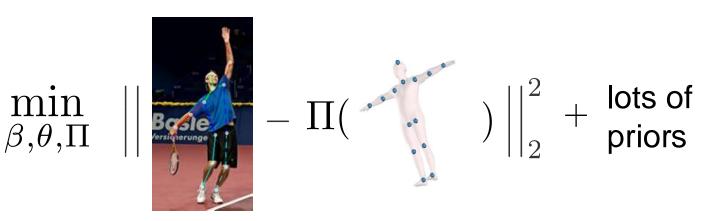
model without paired 3D supervision

model with full 3D supervision

+ Good per frame performance - Lacks temporal coherency

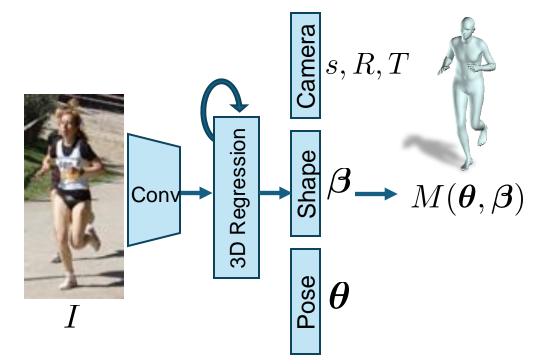
Recap: model based 3D human perception

Iterative optimization in 2016



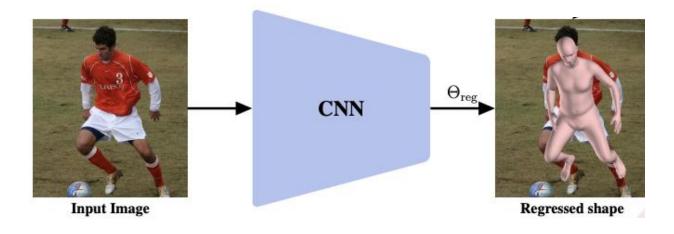
One-shot inference in 2018

Complementary! Discuss Pros and Cons



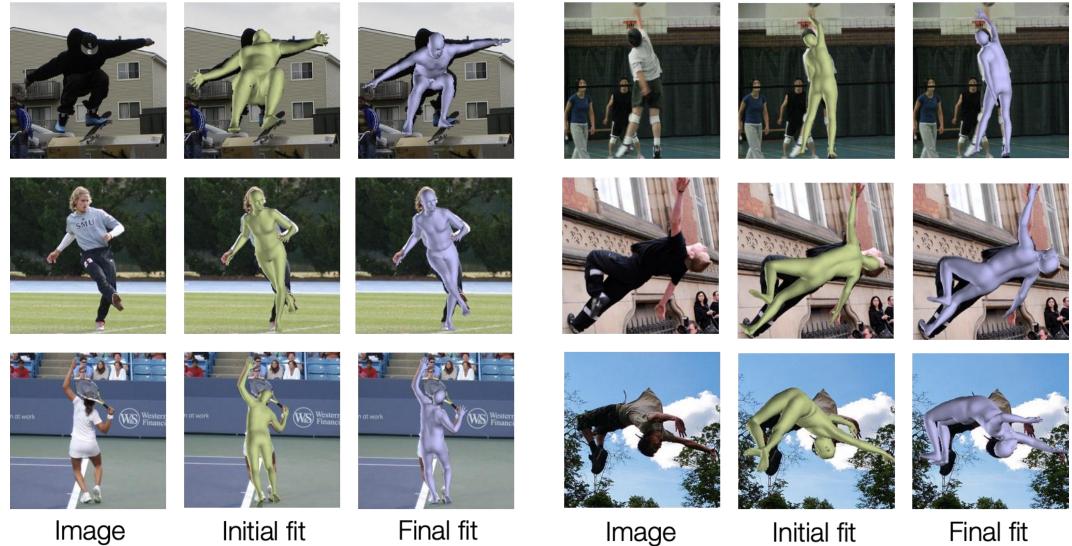
SPIN (SMPL oPtimization IN the loop) [Kolotouros and Pavlakos et al. ICCV 2019]

SPIN [Kolotouros and Pavlakos et al. ICCV 2019]



SPIN is self-improving

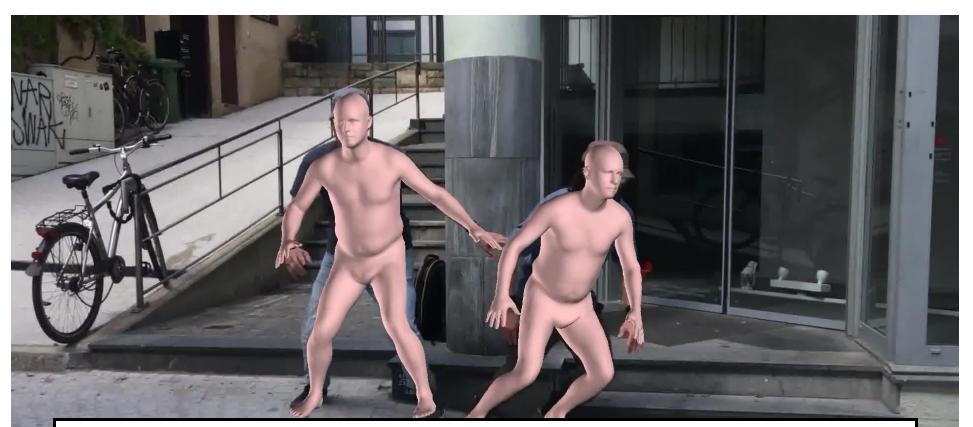
Starting from an initial set of fits, our method can **improve** them.



Initial fit

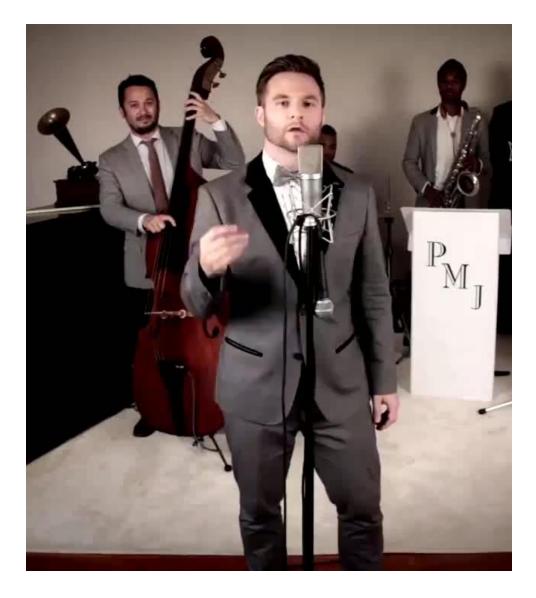
Final fit

SPIN results



+ Much better per frame performance
- Still lack temporal coherency

SMPL-X model



SMPL-X estimated independently on each frame

Model fitting

+

Pavlakos et al. CVPR 2019

Objective function

$E(\beta, \theta, \psi) =$

Data term joints reprojection

Priors

pose, shape, expression, interpenetration

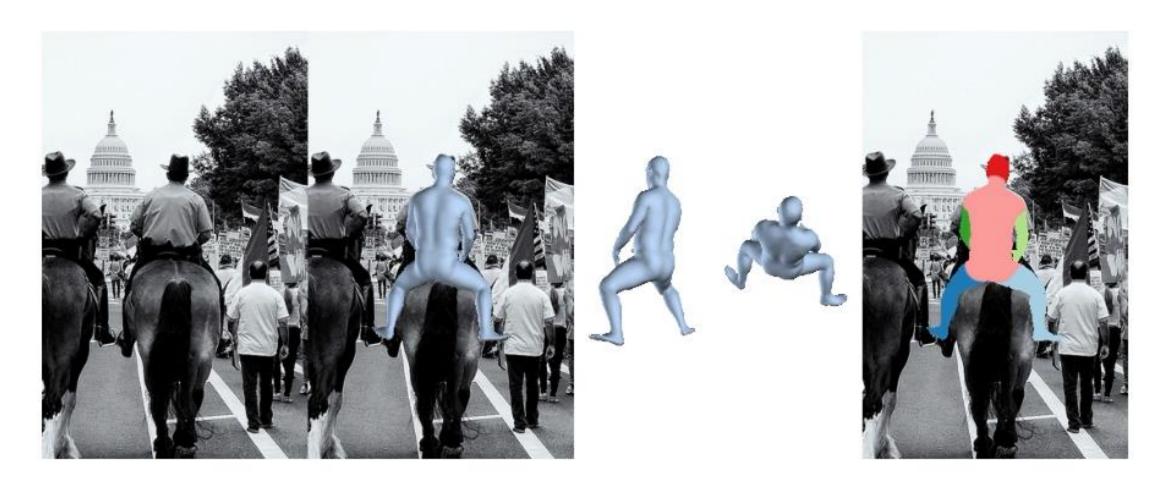
TODO replace with 4D Humans, HaMeR, SLAHMR

Progress on Human Mesh Recovery — from 2018 to 2023

Human Mesh Recovery (HMR)

CVPR 2018

Kanazawa, Black, Jacobs, Malik



Human Mesh Recovery 2.0

ICCV 2023

Goel, Pavlakos, Rajasegaran, Kanazawa*, Malik*, ICCV 2023

Per-frame estimation — no smoothness applied Color = Identity

Human Mesh Recovery 2.0

ICCV 2023

Goel, Pavlakos, Rajasegaran, Kanazawa*, Malik*, ICCV 2023

Per-frame estimation — no smoothness applied Color = Identity

Human Mesh Recovery (HMR) 2018



Kanazawa, Black, Jacobs, Malik, CVPR

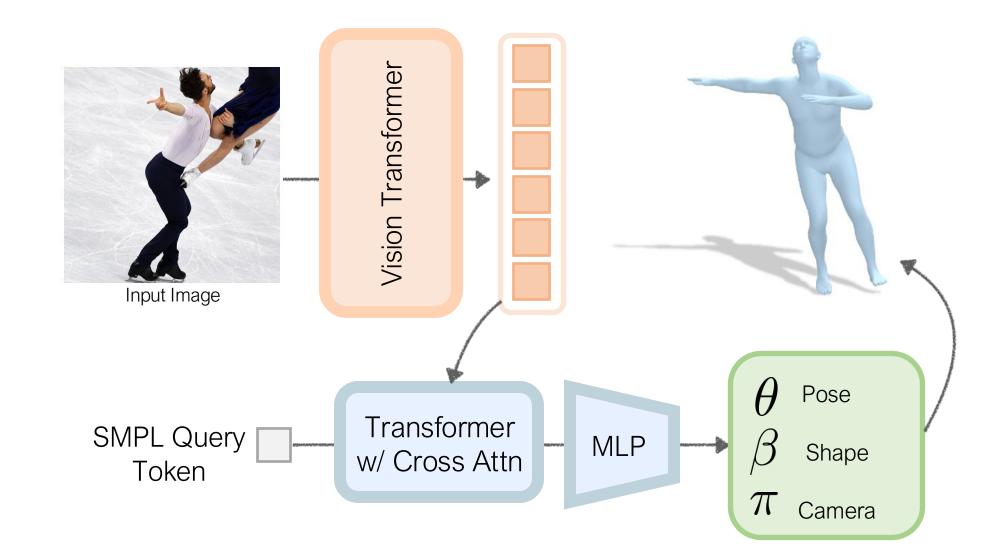
Recipe: Big Model and Big Data

Before

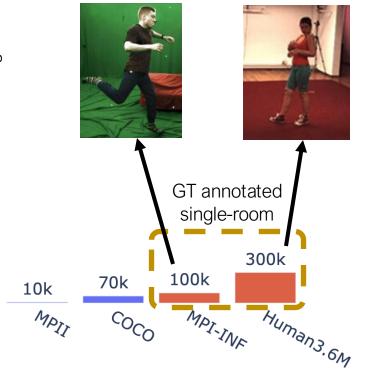
Ours

per-frame estimation - no smoothness applied

Recipe: Big Model and Big Data



Recipe: Big Model and Big Data



2D Keypoints

Finally, distill into a network!

Pose + Shape

Joint Reprojection onto keypoints

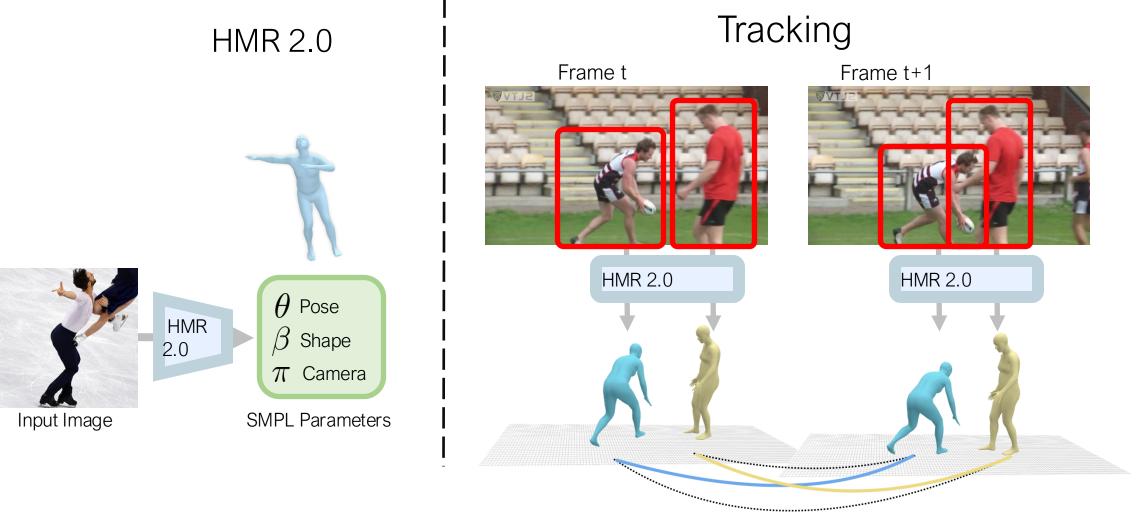
heta Pose

Shape

 π Camera

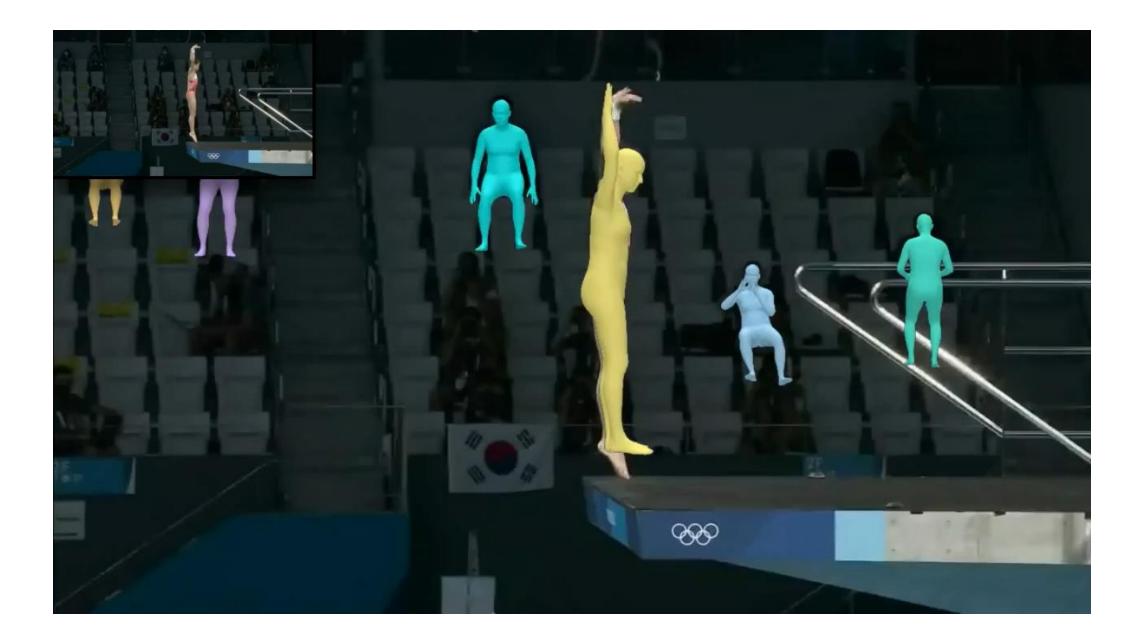
ß

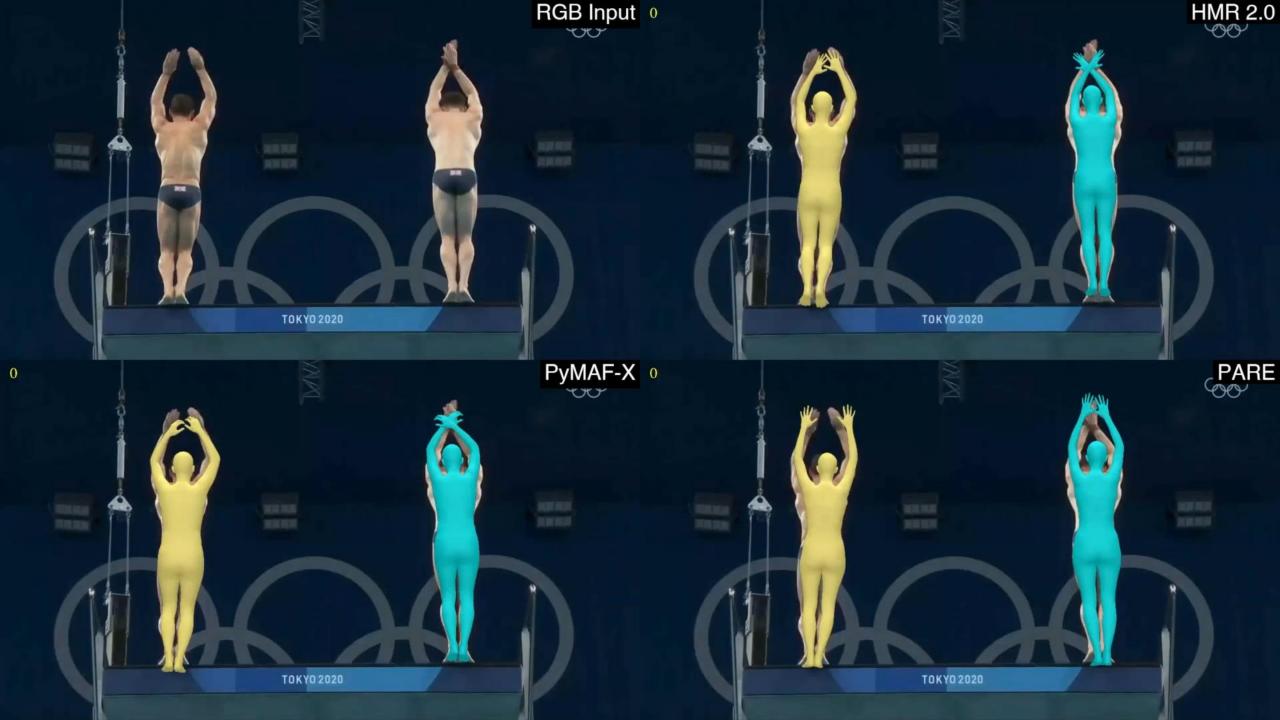
4DHumans: HMR2.0 & PHALP++

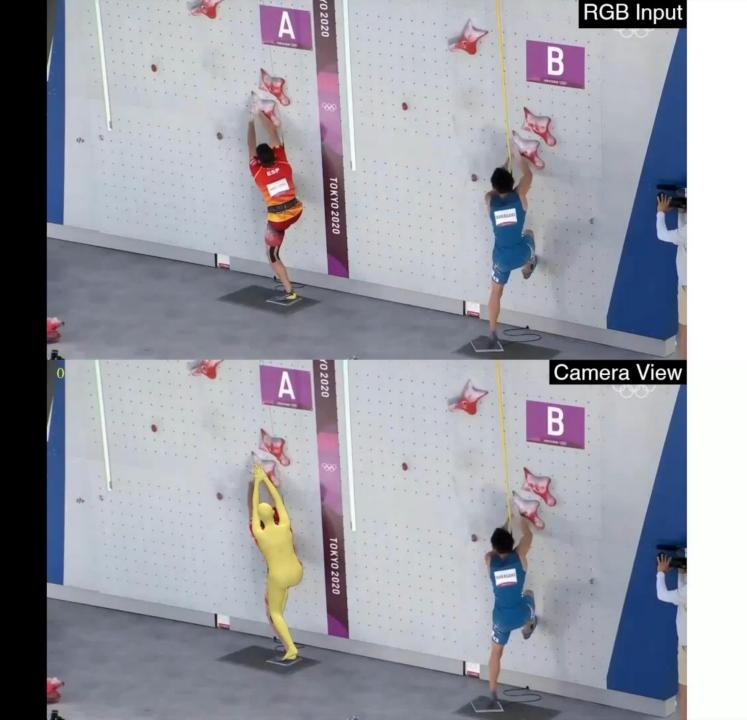


Associate using pose*, location, appearance

110







Per-frame estimation

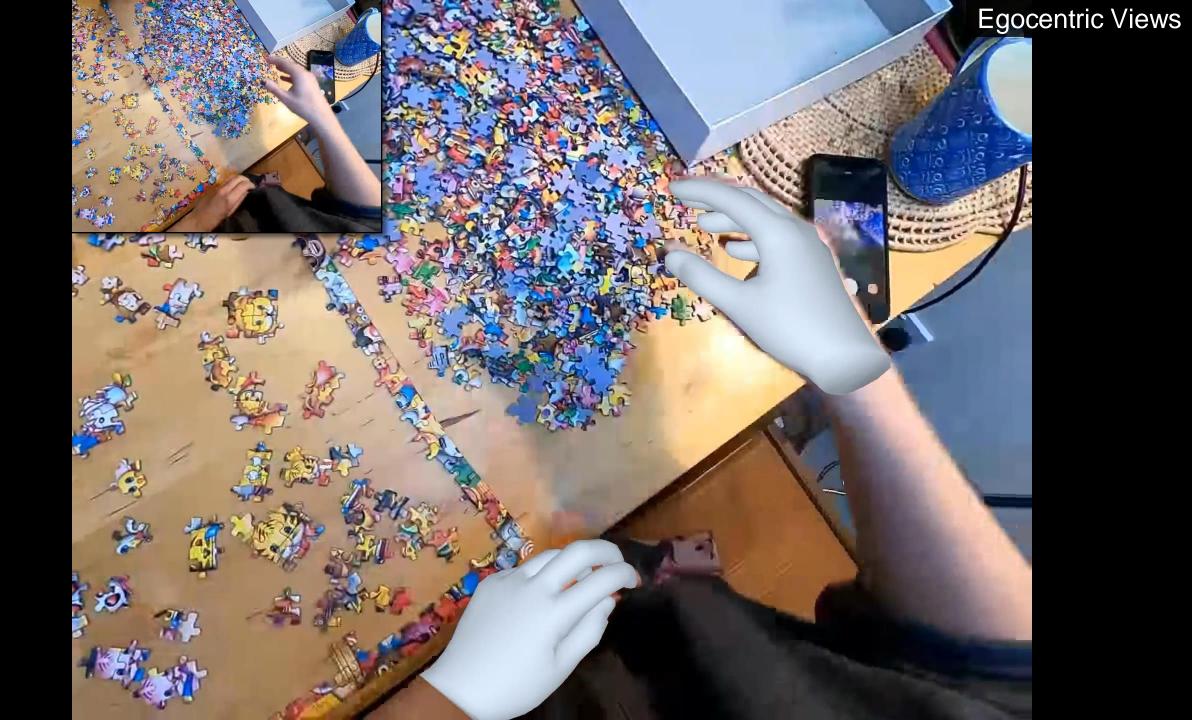
HaMeR - Hand Mesh Recovery

George Pavlakos

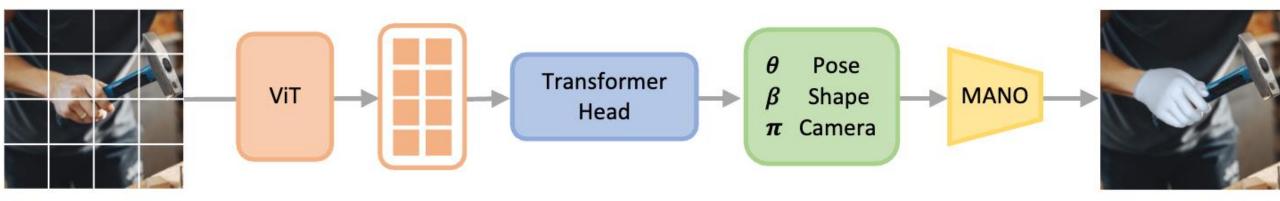
CVPR 2024

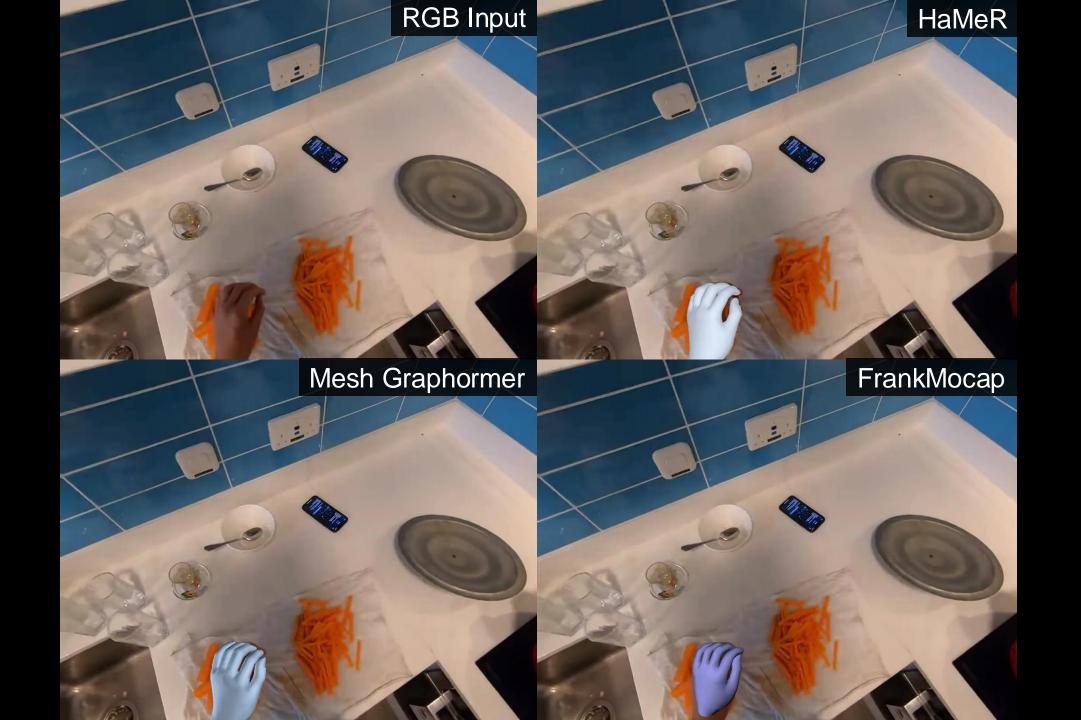
Sign Language

ITALIAN HAND GESTURE



Egocentric Views





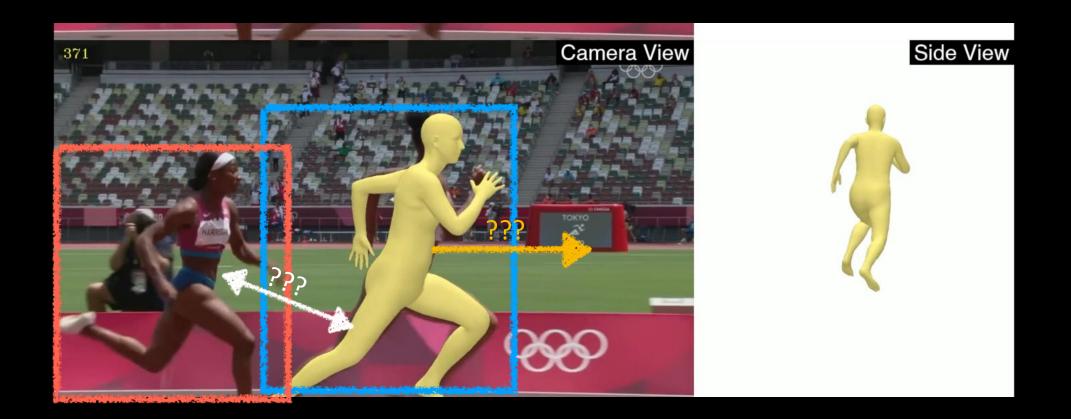
ITALIAN HAND GESTURE:

Right hand Top view

Left hand Top view

VINCENZO'S

Caveat: Local Pose



Decoupling Human and Camera Motion from Videos in the Wild

Vickie Ye

Georgios Pavlakos

Jitendra Malik

Angjoo Kanazawa

CVPR 2023

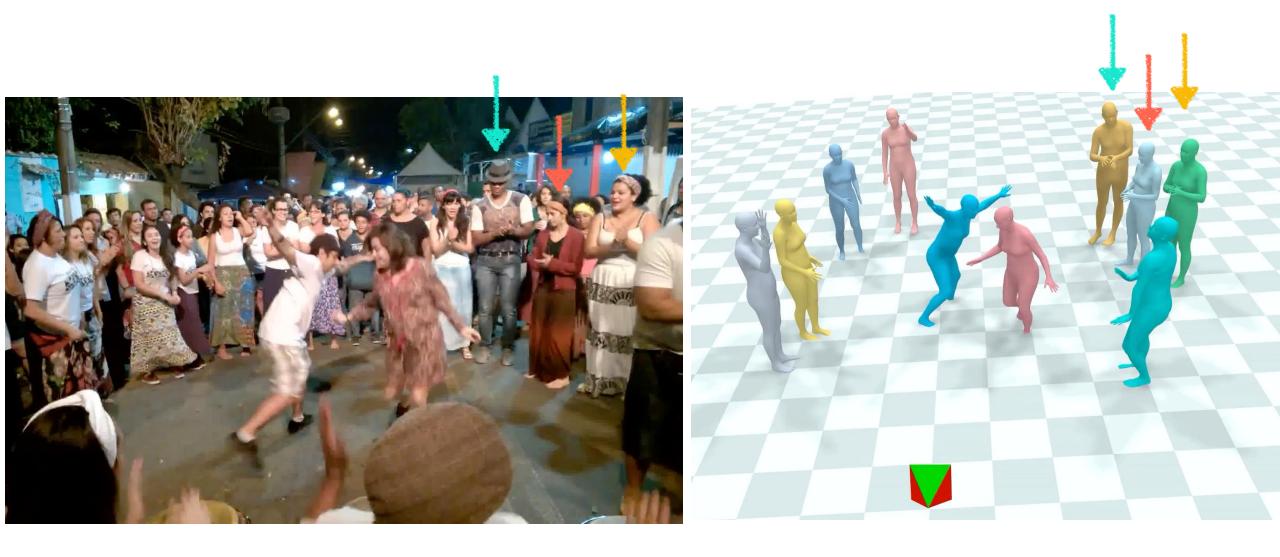
UC Berkeley

We live in a world that is 3D and dynamic.

Results from SLAHMR!! [Ye et al. CVPR 2023]

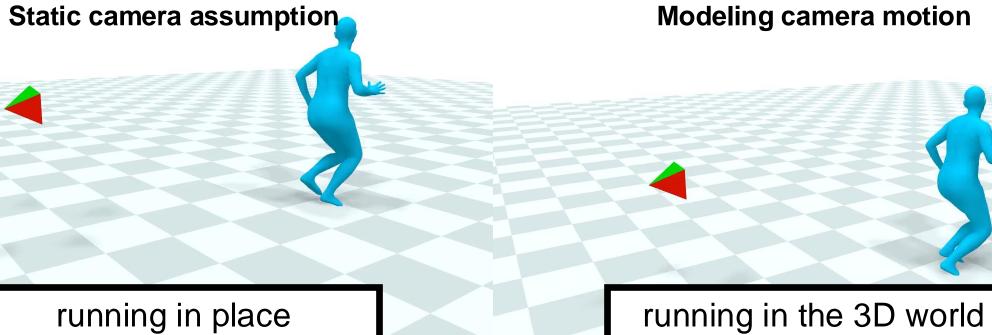
SLAHMR. Decoupling Human and Camera Motion from Videos in the Wild [Ye et al. CVPR 2023]

SLAHMR. Decoupling Human and Camera Motion from Videos in the Wild [Ye et al. CVPR 2023]



SLAHMR. Decoupling Human and Camera Motion from Videos in the Wild [Ye et al. CVPR 2023]

Modeling camera motion



Output:

 $\left\{ ^{\operatorname{cam}}\mathbf{P}\right\}$ Tracked People in $\{R,T\}$ Camera Carlera Motion

 $\{ {}^{\operatorname{world}}\mathbf{P} \}$ **Tracked People** $\{R, \alpha T\}$ in Wodaledame $\{g\}$ Grocander Pane in Metivorld

SLAHMR: Simultaneous Localization and Human Mesh Recovery

Key signal: Motion Prior

Recover World that gives most probable motion

A data-driven motion prior: HuMoR [Rempe et al. ICCV 2021]

 $p(\mathbf{k} | \mathbf{k})$

SLAHMR, Top View

SLAHMR, Side View



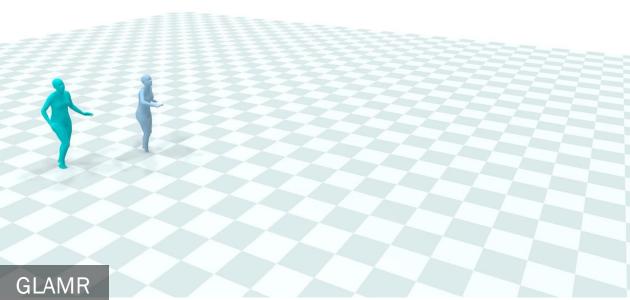
SLAHMR, Top View

SLAHMR, Side View

VU

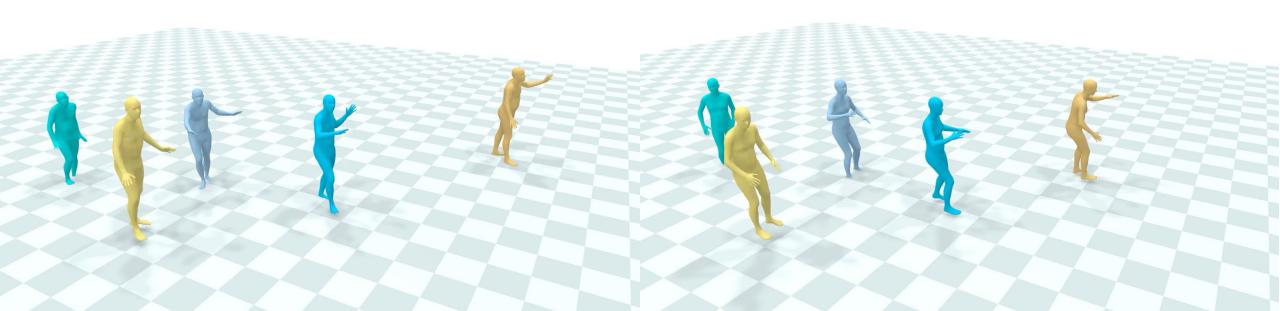
SLAHMR

Single View (PHALP+)



SLAHMR

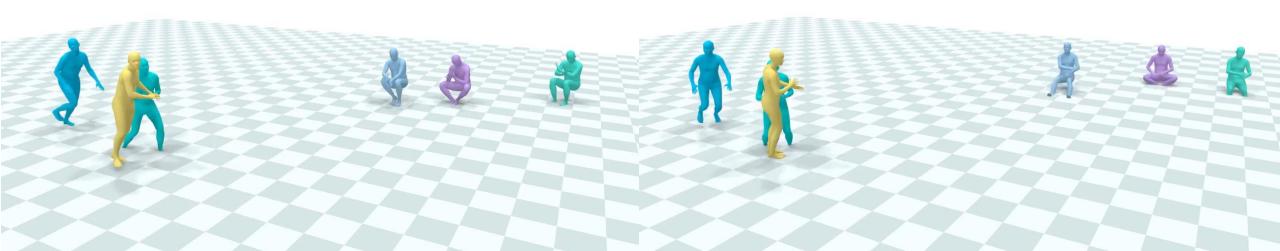
Single View (PHALP+)



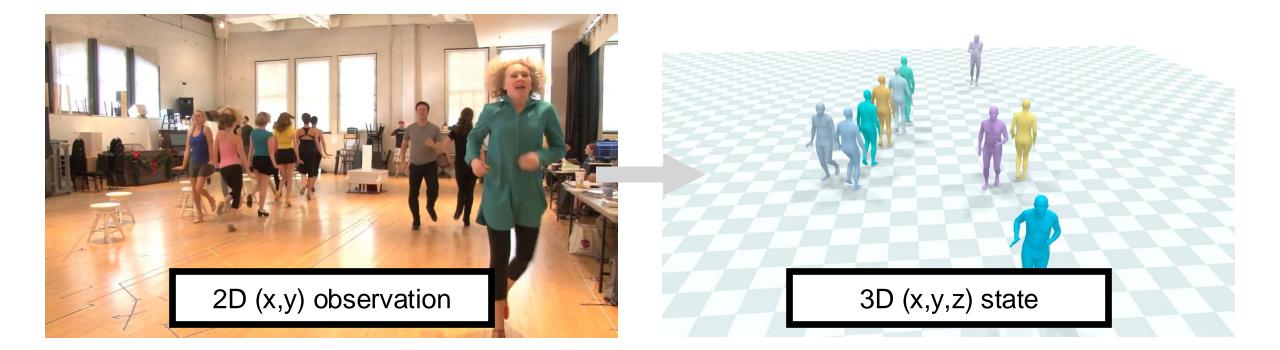
Comparisons

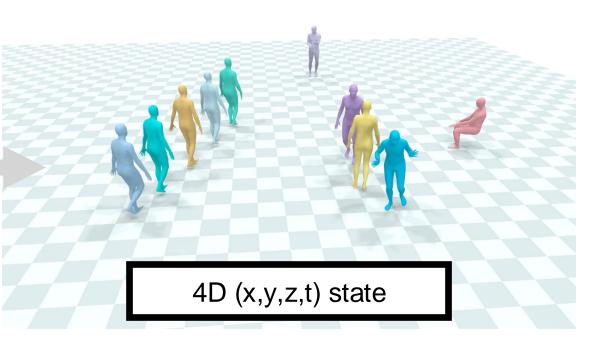
Ours

Single View (PHALP+)



4D Reconstruction

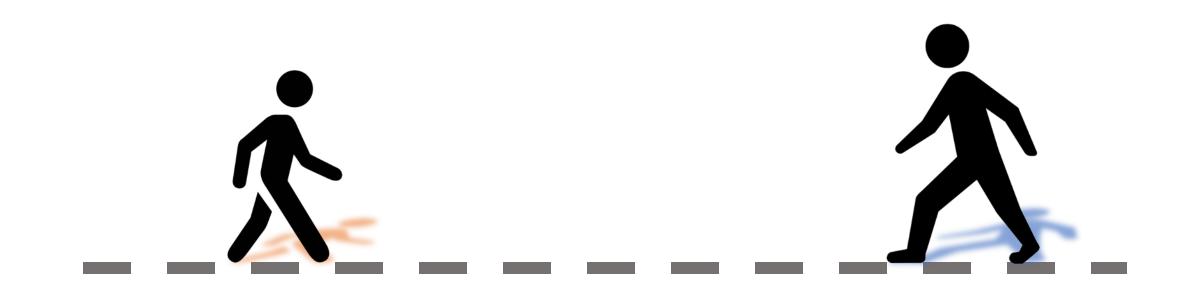




Prereq: tracking people across time

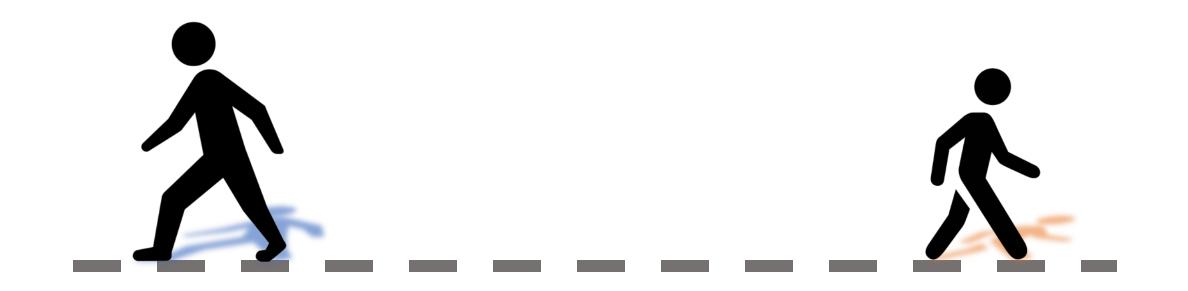
PHALP: Rajasegaran, Pavlakos, Kanazawa, Malik, CVPR 2022 (Oral)

• In 2D, occlusion is hard to disambiguate

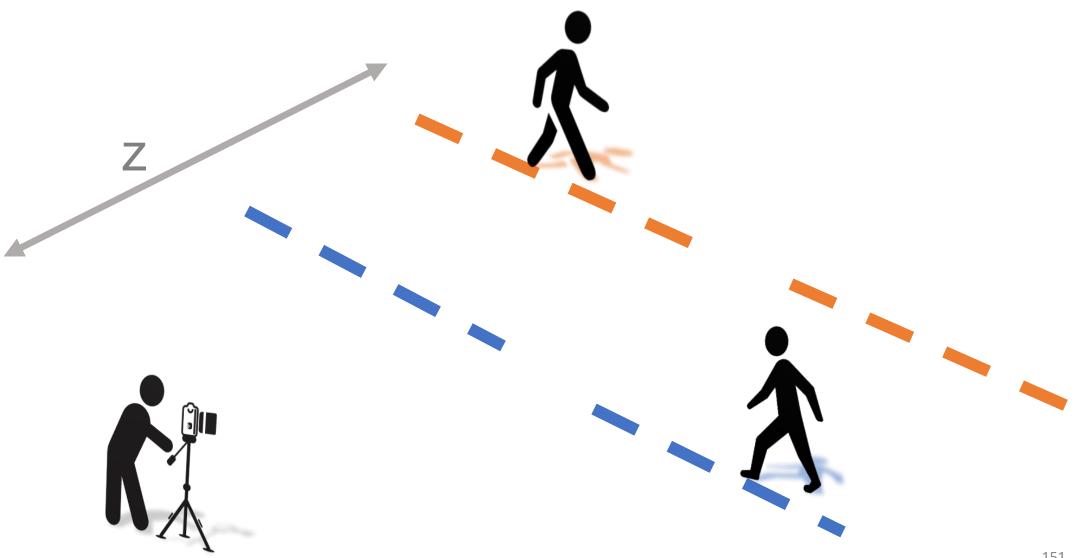


• In 2D, occlusion is hard to disambiguate

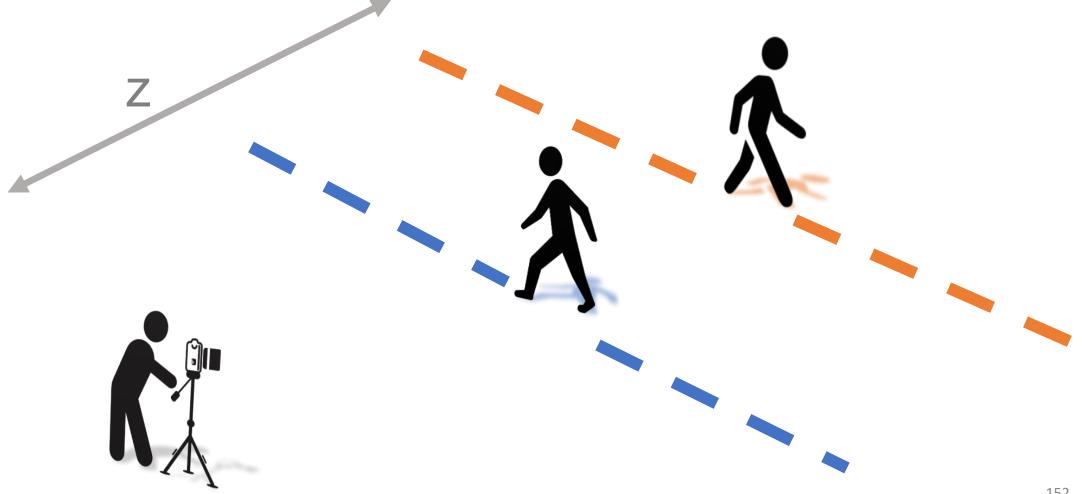
• In 2D, occlusion is hard to disambiguate



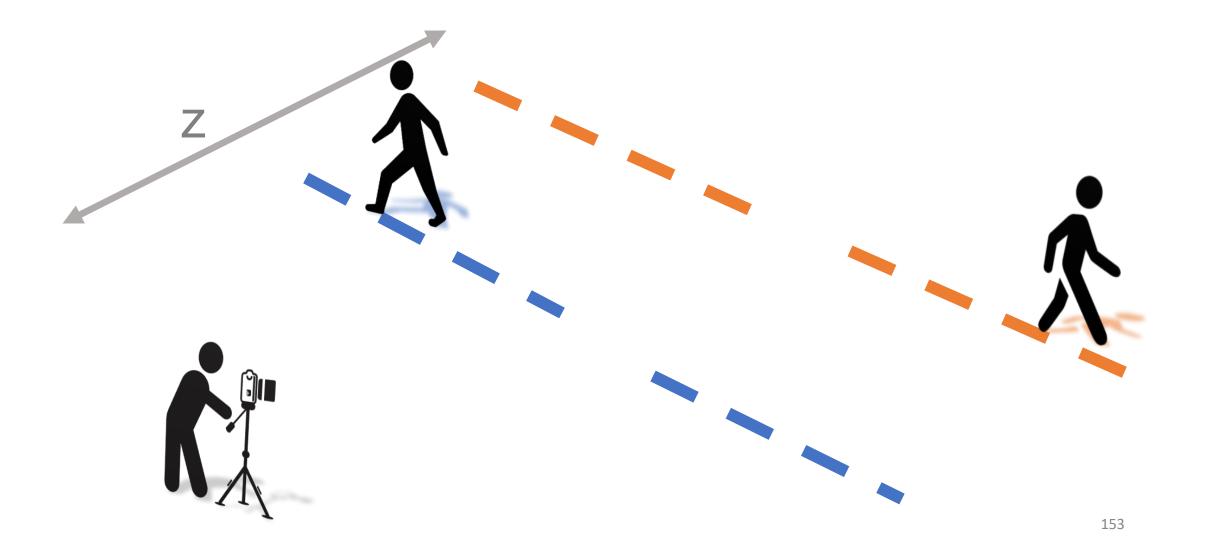
• In 2D, they overlap, but in 3D they don't!

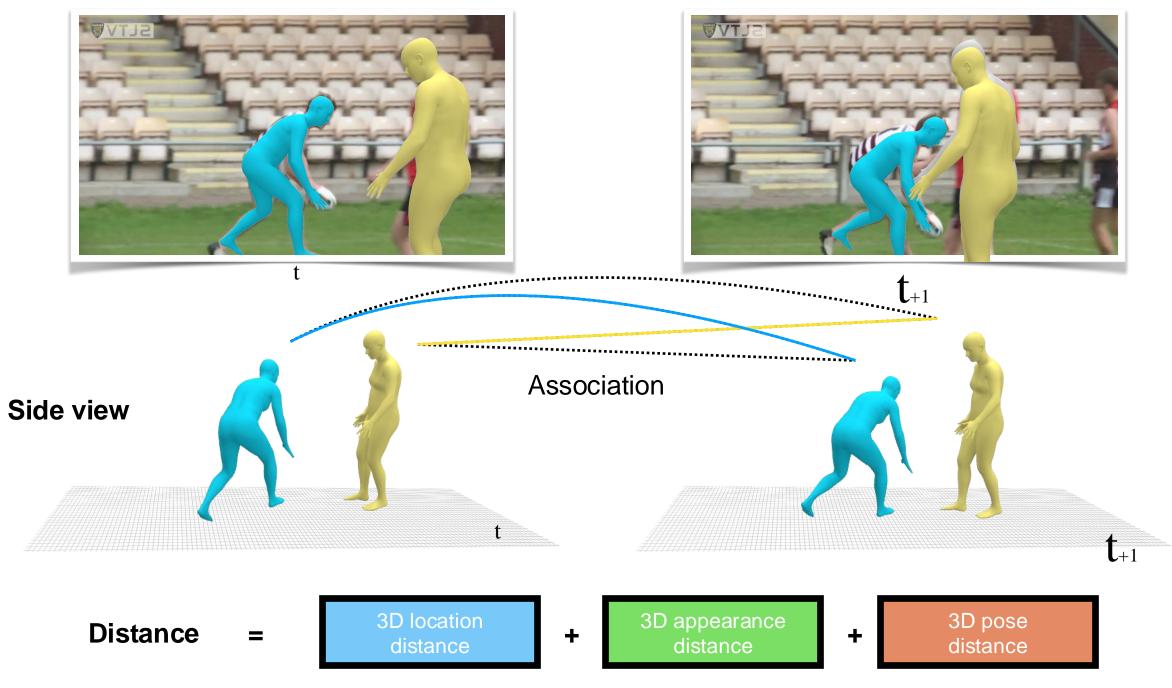


• In 2D, they overlap, but in 3D they don't!



• In 2D, they overlap, but in 3D they don't!





PHALP: Rajasegaran, Pavlakos, Kanazawa, Malik, CVPR 2022 (Oral)

A benefit of video: Dynamics

and the second s

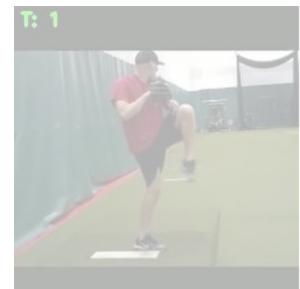
and any course in the summarian

Auto-regressive prediction of 3D motion from video

Predicting 3D Human Dynamics from Video, Zhang, Felsen, Kanazawa, Malik, ICCV 2019

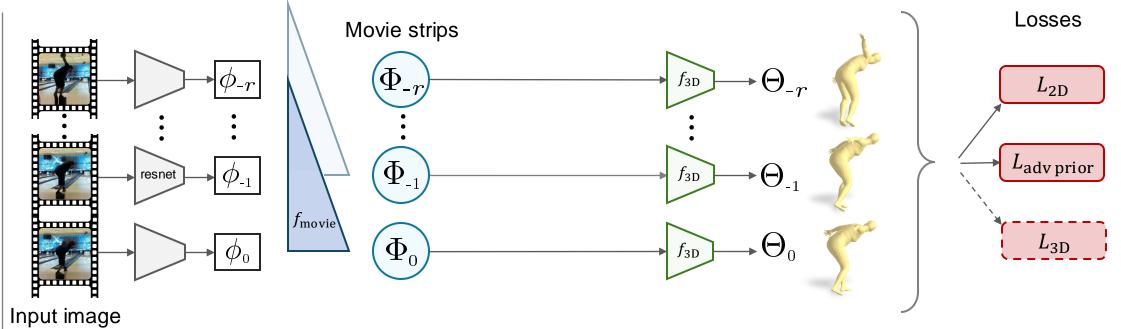
Test Time





Input Video Ground Truth Video Predicted Future Different Viewpoint

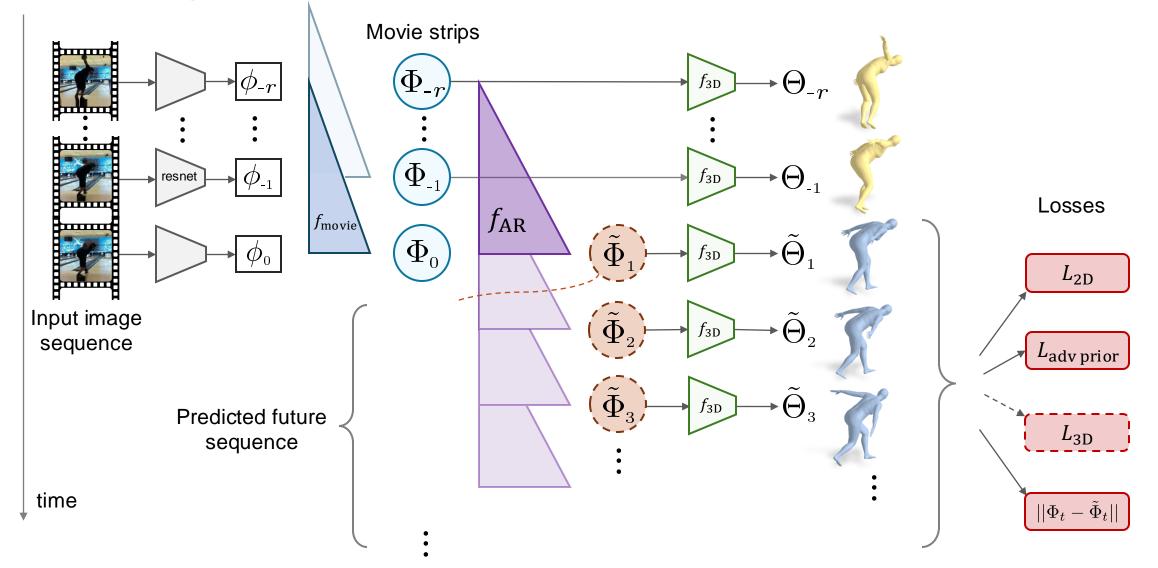
Overview



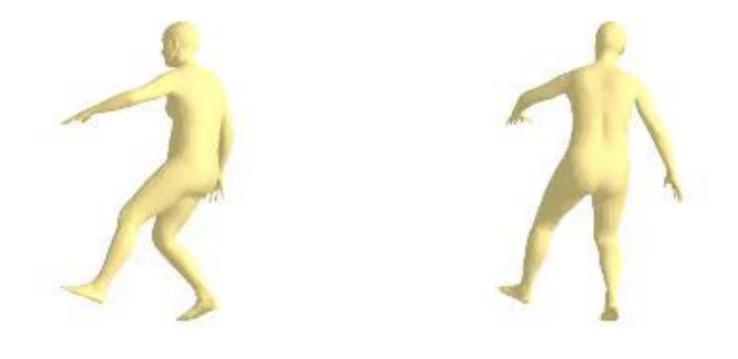
sequence

time

Autoregressive Prediction (Latent Space)



Yellow = Conditioning Blue = Future Prediction from movie strip



Camera View

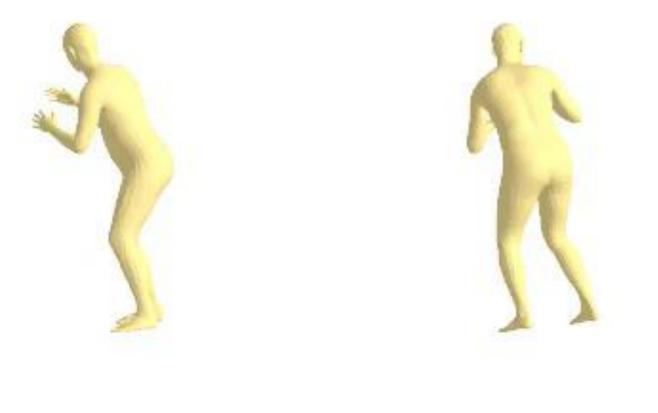
Alternate Viewpoint

Yellow = Conditioning Blue = Future Prediction from movie strip

Camera View

Alternate Viewpoint

Yellow = Conditioning Blue = Future Prediction from movie strip



Camera View

Alternate Viewpoint

Finally, a step towards this baby

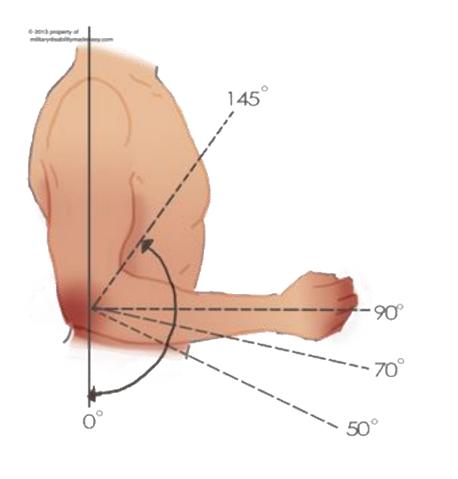
SfV: Reinforcement Learning of Skills from Videos

Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, Sergey Levine

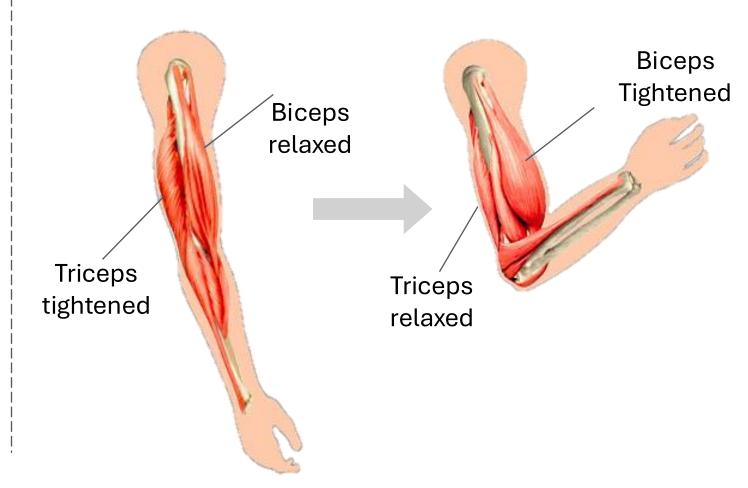
SIGGRAPH Asia 2018

Perception is not the end of the story

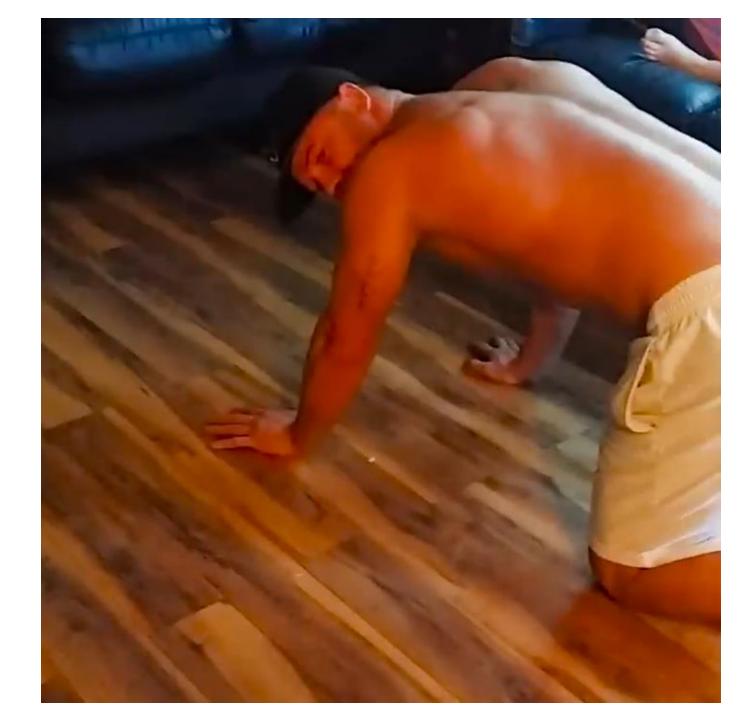
Perceiving the 3D pose



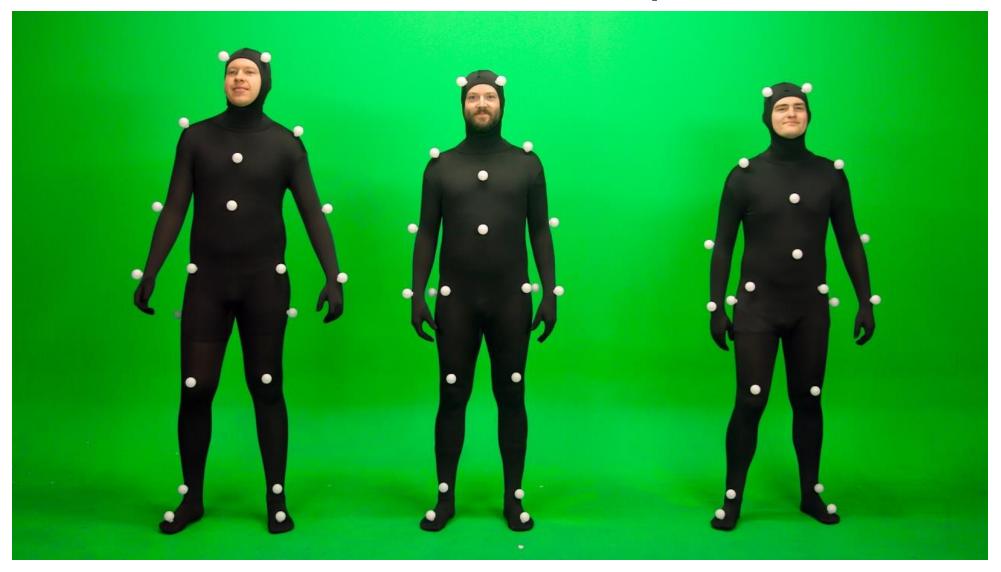
Actuating the muscle to get to the pose



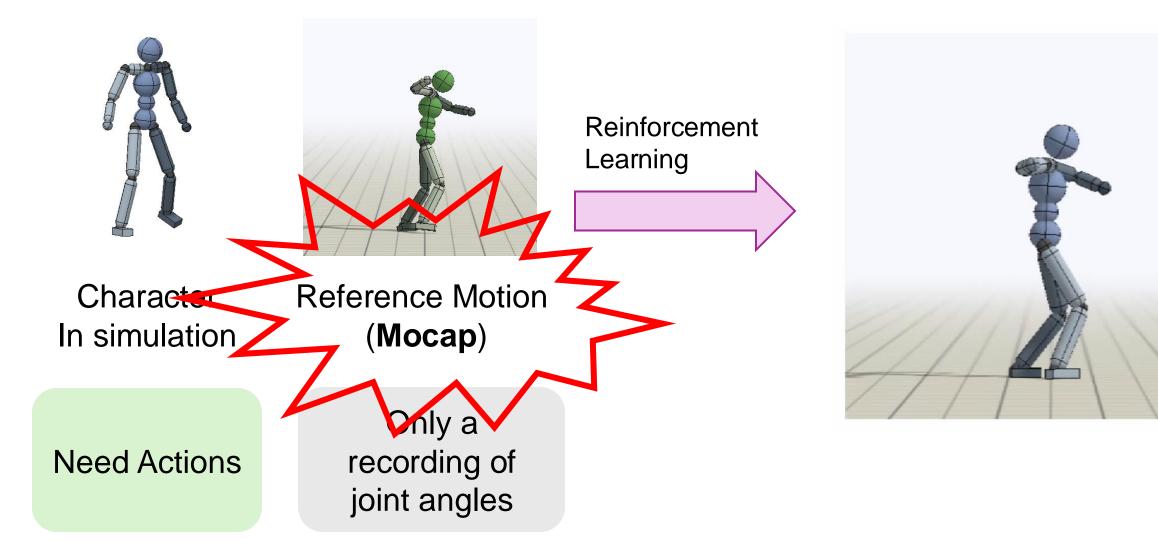
Control is not easy!



Past work on start from mocap



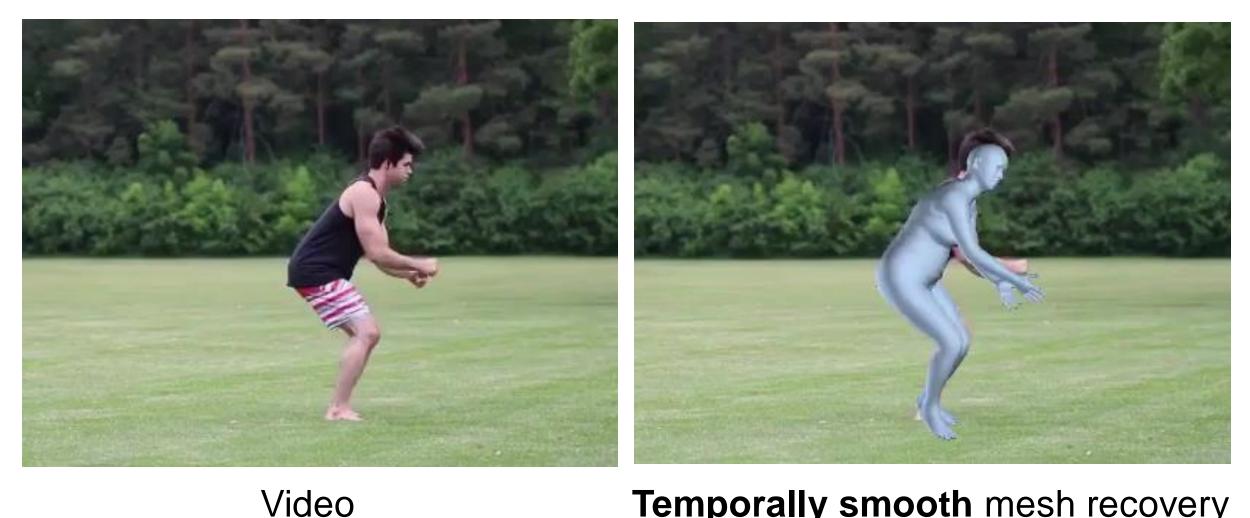
Deep Reinforcement Learning Based Motion Imitation



DeepMimic [Peng et al. SIGGRAPH 2018]

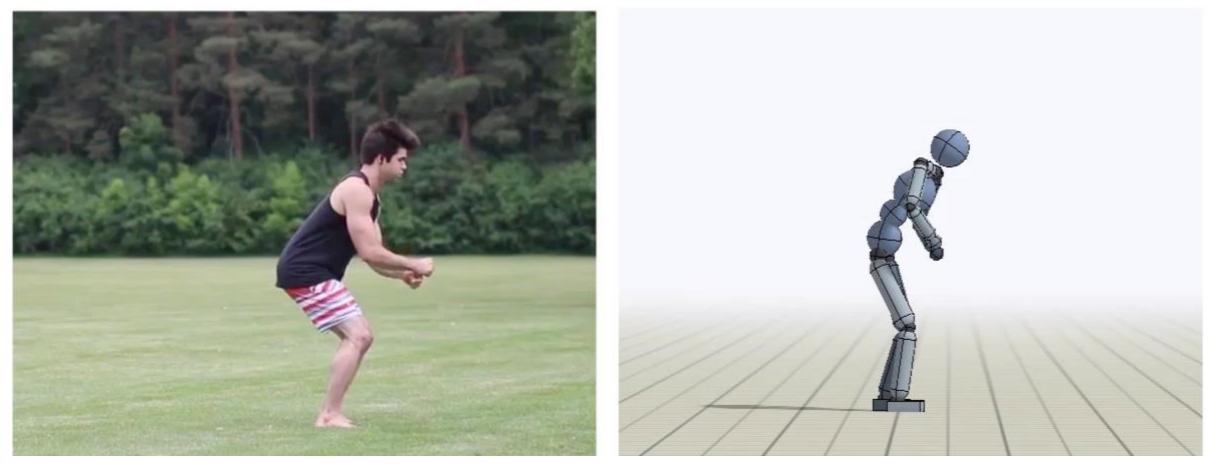
Expand the world to video

Learning Dynamic Skills from Videos



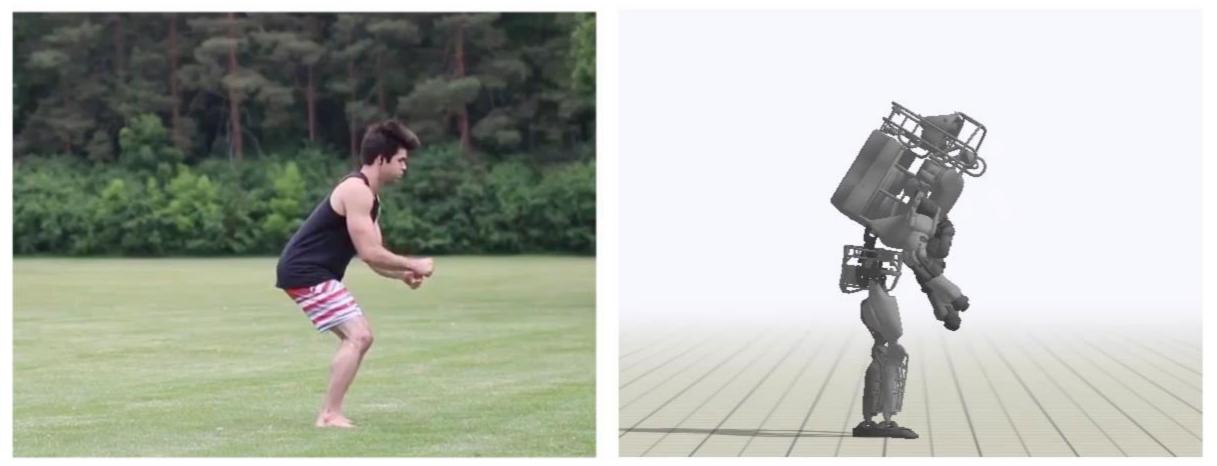
Temporally smooth mesh recovery

Use recovered 3D pose to train a physically simulated agent



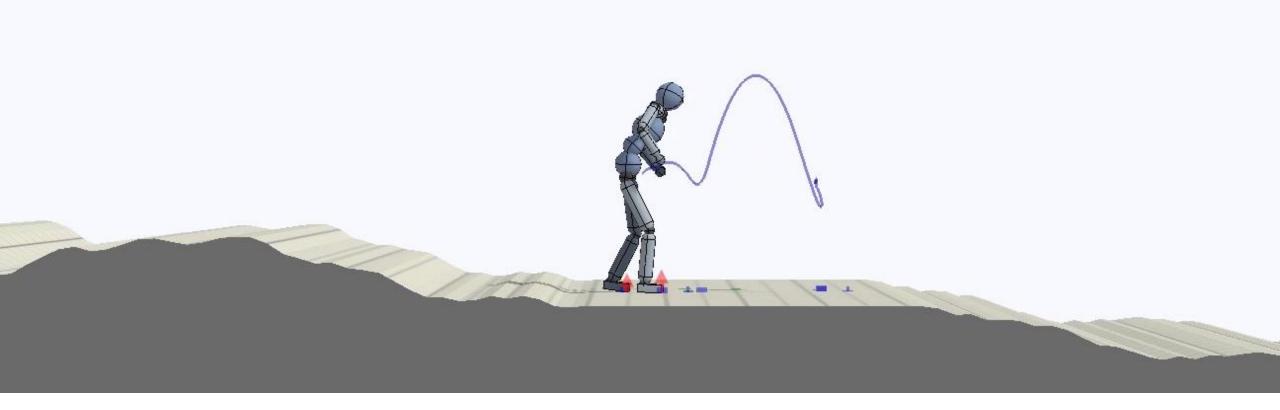
Video

Train Atlas (169kg)

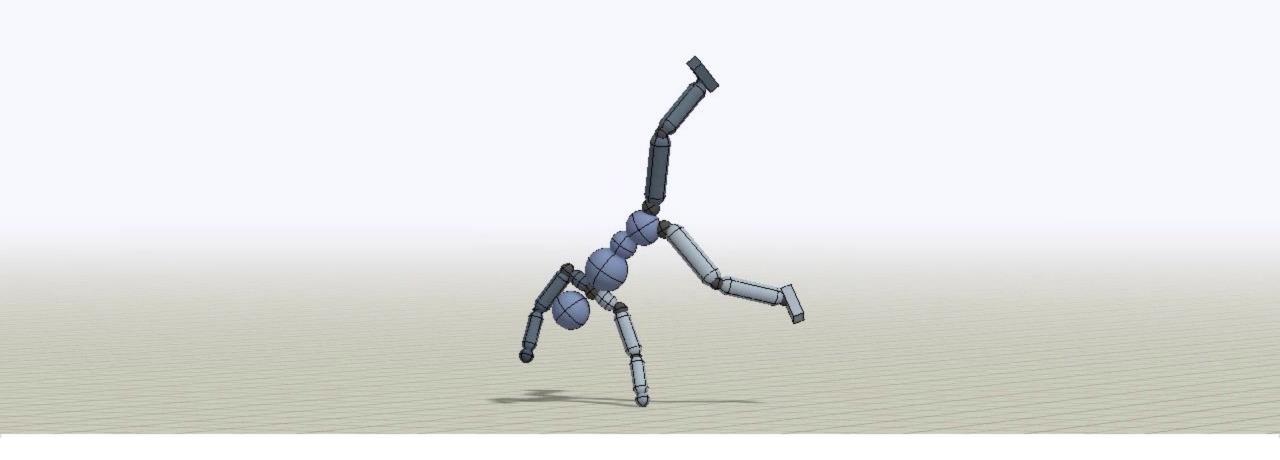


Policy

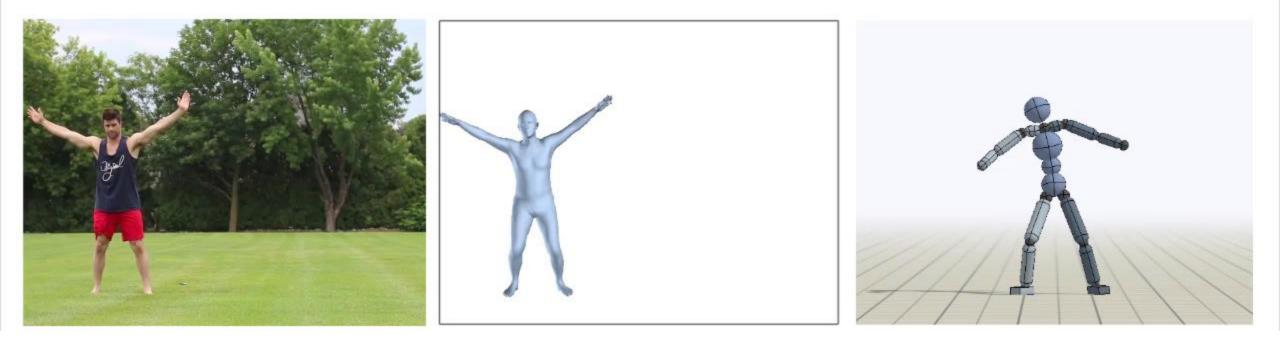
Environment Retargeting



Robustness



Humanoid: Cartwheel



Video

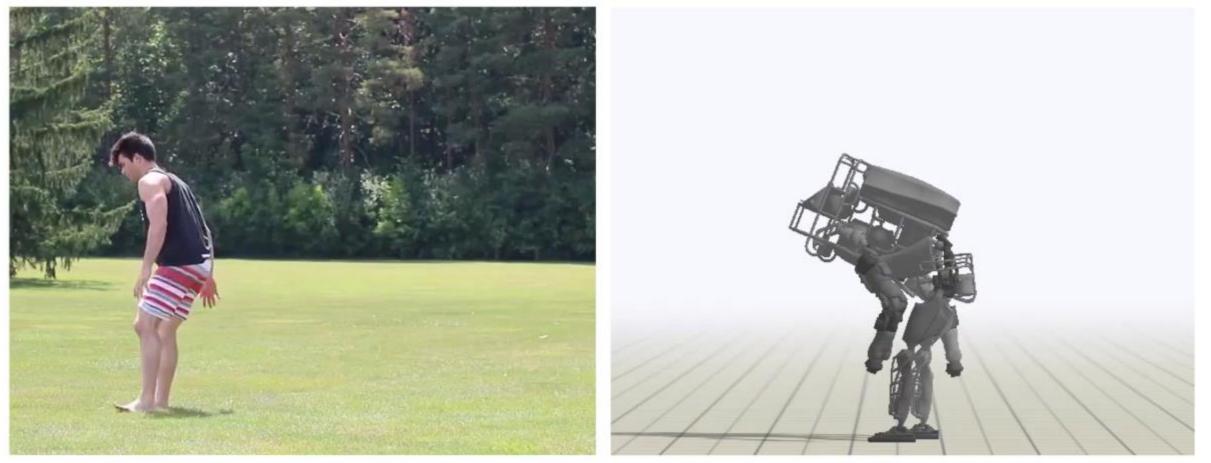
Recovered 3D Body

Policy

Humanoid: Kip-Up

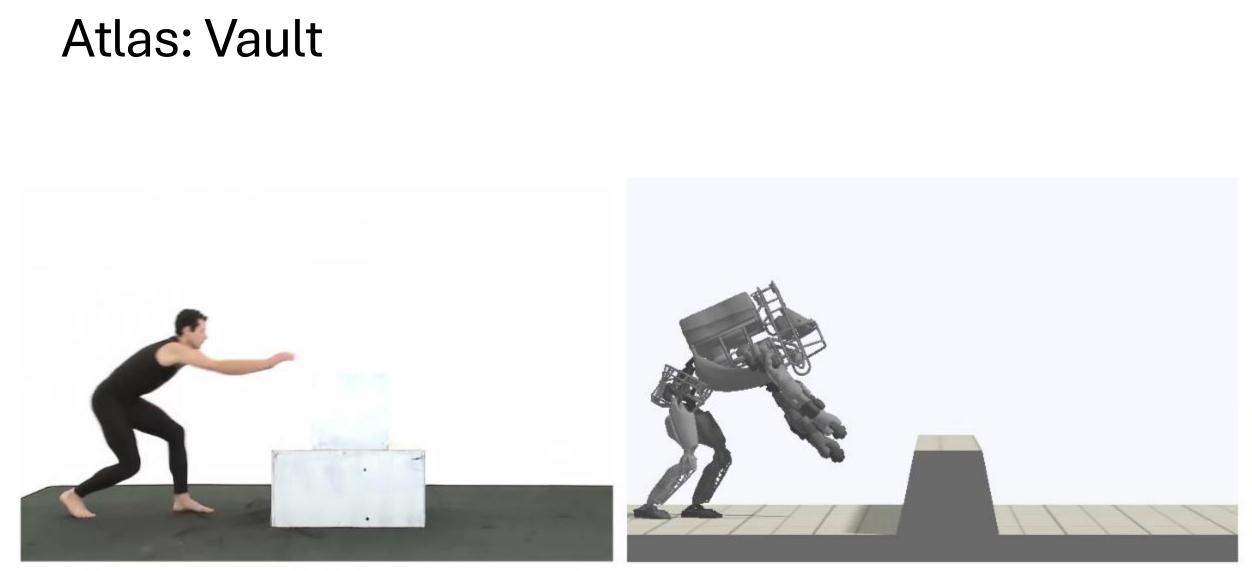
Video: Kip-Up

Atlas (169kg): Handspring



Video: Handspring A

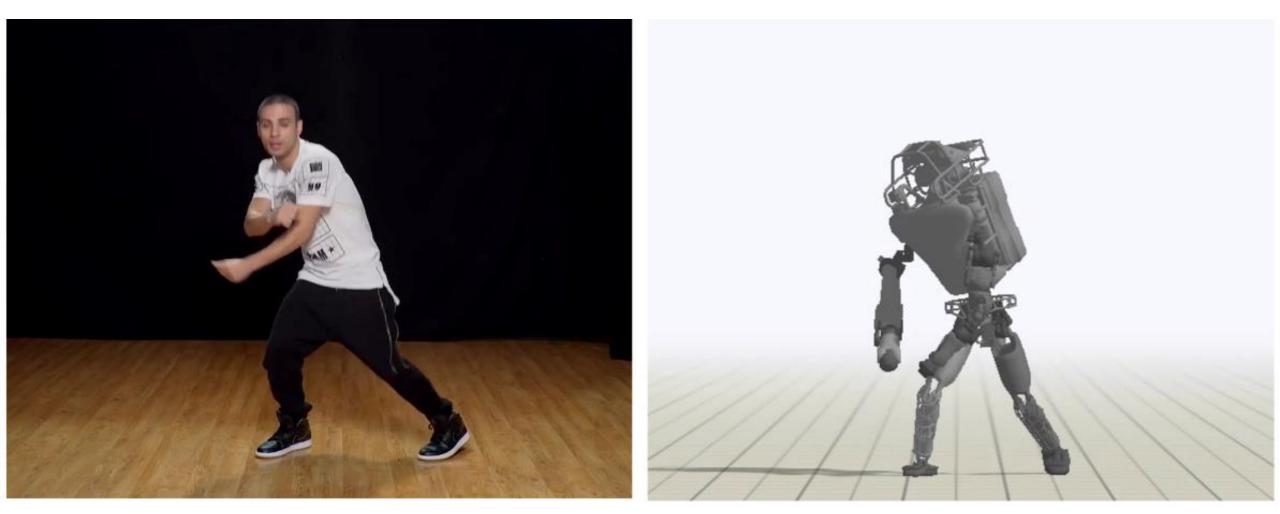
Policy



Video: Vault

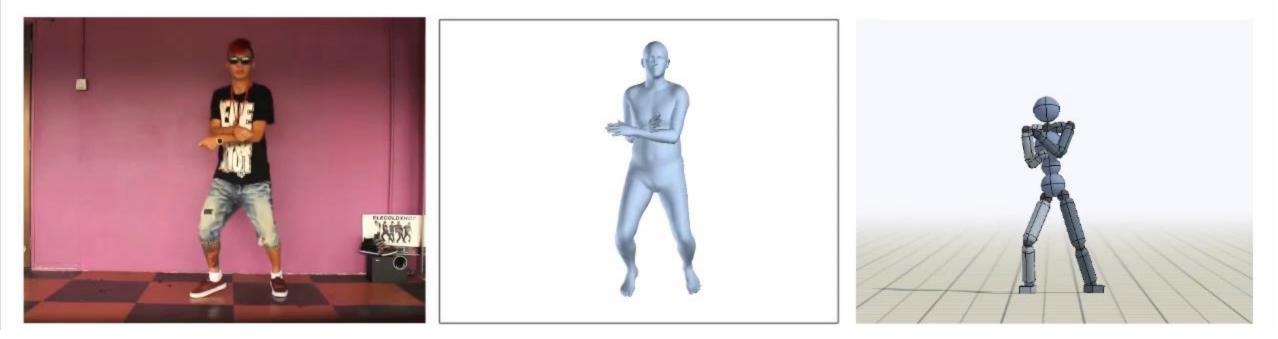
Policy

Atlas: Dance



Video

Failure Cases



Video

Recovered 3D Body

Policy

