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Answer phone



Climb (e.g., a mountain)



Clink glass



Dig



Fall down



Give/Serve (an object) to (a person)



Hug (a person)



work on a computer

answer phone

climb (e.g., mountain)

play board game

play with pets

drive (e.g., a car)

push (an object)

pull (an object)

point to (an object)

play musical instrument

text on/look at a cellphone

turn (e.g., screwdriver)

dress / put on clothing

ride (e.g., bike, car, horse)

watch (e.g., TV)

run/jog

walk

jump

stand

sit

lift/pick up

put down

carry

hold

throw

catch

eat

drink

cut

hit

stir

press

extract

read

write

smoke

sail boat

row boat

fishing

touch

cook

kick

paint

dig

shovel

chop

shoot

take a photo

brush teeth

clink glass

talk to

watch

listen to

sing to

kiss

hug

grab

lift

kick

get up

fall down

crouch/kneel

martial art

Pose (14)

give/serve … to … 

take … from … 

play with kids

hand shake

hand clap

hand wave

fight/hit

push

lie/sleep

bend/bow 

crawl

swim

dance

Person-person (17)

open

close

enter

exit

Person-object (49)



Label Annotation



Annotation Goal

3 secs

Left: Kneel, Talk to

Right: Stand, Listen, Shoot



User Interface for Action Selection





Around the World in 3,000 
Hours of Egocentric Video

Jitendra Malik

Meta AI / UC Berkeley

This talk based on slides from Kristen Grauman and the Ego4D team



Ego4D team



Why egocentric video? 
Robot learning

Robots that can learn from video how to manipulate human-

centric objects and navigate in human-centric spaces



First-person perception and learning

Status quo: 

Learning and inference with 
“disembodied” images/videos.

On the horizon:

Visual learning in the context 
of agent goals, interaction, and 
multi-sensory observations.

Kristen Grauman, FAIR & UT Austin



Existing first-person video datasets

Inspire this effort, but call for greater scale, content, diversity

EPIC Kitchens 

Damen et al. 2020

45 people, 100 hrs

kitchens only

UT Ego

Lee et al. 2012

4 people, 17 hrs

daily life, in/outdoors

EGTEA Gaze+

Li et al. 2018

32 people, 28 hrs

kitchens only

Charades-Ego

Sigurdsson 2018

71 people, 34 hrs

indoor

ADL

Pirsiavash 2012

20 people, 10 hrs

apartment

#people

#hours
#scenes

Ego4D 

GOAL

Kristen Grauman, FAIR & UT Austin



Goal: Large-scale “in the wild” first-person video dataset

 Catalyze research in multimodal egocentric perception

 

Goal: Large-scale “in the wild” first-person video dataset

 Catalyze research in multimodal egocentric perception

Content: 

• 3,025 hours of video from 74 cities & 9 countries

• 855 unique camera wearers – not just graduate students!

• Daily life activities – work, home, shopping, commute, street

• Multi-modal sensing: audio, 3D scans, IMU, stereo, multi-camera

• Benchmark challenge for the research community

Timeline:

• Collection began early 2020

• Paper released last week, data will be released late Nov 2021

  

Ego4D: a new massive egocentric video dataset



Ego4D consortium
Towards geographically diverse ego-video coverage

IIIT Hyderabad

KAUST
U. Tokyo

U. Bristol

U. Catania

Georgia Tech

CMU

MIT
U. Minnesota

U. Indiana

UPenn

U of Los Andes Natl U. 

Singapore

CMU Africa

Facebook

Kristen Grauman, FAIR & UT Austin



855 camera wearers

Self-reported demographics and countries of residence

Kristen Grauman, FAIR & UT Austin



Everyday activities in the home:

●Sleeping

●Daily hygiene

●Doing hair/make-up

●Cleaning / laundry

●Cooking

●Talking with family members

●Hosting a party

●Eating

●Yardwork / shoveling snow

●Household management - care 

for kids

●Fixing something in the home

●Playing with pets

●Crafting/knitting/sewing/drawing/

painting/etc

Entertainment/Leisure

●Watching movies at cinema

●Watching tv

●Reading books

●Playing games / video games

●Attending sporting events - watching 

and participating in

●Attending play/ballet

●Attending concerts

●Hanging out with friends at a bar

●Eating at a restaurant

●Eating at a friend’s home

●Attending a party

●Talking on the phone

●Listening to music

●BBQ’ing/picnics

●Going to a salon (nail, hair, spa)

●Getting a tattoo / piercing

●Volunteering

●Practicing a musical instrument

●Attending a festival or fair

●

Exercise:

●Going to the gym 

●Yoga practice

●Swimming in a 

pool/ocean

●Working out at home

●Cycling / jogging 

●Dancing

●Working out outside

●Walking on street 

●Going to the park

●Hiking

●Tourism

Work

●Working at desk

●Participating in a 

meeting

●Attending a 

lecture/class

●Writing on whiteboard

●Video call

●Eating at the cafeteria

●Making coffee

●Talking to colleagues

Errands

●Grocery shopping

●Clothes, shopping

●Getting car fixed

●Going to the bank

●Walking the dog

●Washing the dog / 

pet, grooming horse

●Appointments: 

doctor, dentist, hair

Transportation:

●Car - commuting, 

road trip

●Bus

●Train

●Airplane

●Bike

●Skateboard/scooter

Daily-life scenarios
How people spend their days: US Bureau of Labor Statistics

https://www.bls.gov/news.release/atus.nr0.htm

Key tenet in Ego4D:

Capture unscripted, daily-life activity

https://www.bls.gov/news.release/atus.nr0.htm


Wide variety of activity in the home, workplace, outdoors, errands

Daily-life scenarios

Kristen Grauman, FAIR & UT Austin



Wearable cameras

We deploy a variety of head-mounted cameras.

GoPro Vuzix Blade Pupil Labs ZShade WeeView

Kristen Grauman, FAIR & UT Austin



Privacy and ethics

• Mobilized leading experts in first-person video capture, with 
expertise in privacy, de-identification, and responsible in-the-
wild data collection

• Each partner underwent separate months-long IRB review 
process, overseeing ethical and privacy standards for data 
collection, management, and informed consent.

• Consent forms signed by all recorded people where relevant

• State-of-the-art de-identification processes, featuring 
both automated and manual reviews for faces, screens, credit 
cards, and other identifiers

Kristen Grauman, FAIR & UT Austin



● 3,025+ hours of video

● 855+ camera wearers

● Geographic diversity

● Occupational diversity

● Unscripted daily life activity

Ego4D data: everyday activity around the world

Kristen Grauman, FAIR & UT Austin



● 3,025+ hours of video

● 855+ camera wearers

● Geographic diversity

● Occupational diversity

● Unscripted daily life activity

Ego4D data: everyday activity around the world

Kristen Grauman, FAIR & UT Austin



Ego4D data: 3D environment scans

Available 

for 491 

hours of 

video



Ego4D data: multi-camera and eye gaze

Multiple simultaneous egocentric cameras Eye gaze

Kristen Grauman, FAIR & UT Austin



Ego4D benchmark suite

Past

Episodic Memory
“where is my X?”

Forecasting
“what will I do next?”

Future

Hands & Objects
“what am I doing and how?”

Present

Audio-visual Diarization
“who said what when?”

Social Interaction
“who is attending to whom?”

Present



Annotation: text narrations

Dense 

descriptive text 

of each camera 

wearer activity 

+ clip-level 

summaries

13 sentences 

per minute

4M sentences 

on 3,025 hours

Kristen Grauman, FAIR & UT Austin



Annotation: benchmarks

Narrations (text)

Spatio-temporal labels
• Moments
• Actions
• Active objects
• State changes
• Faces
• Hands

Multimodal labels
• Query+response
• Speech transcript

More than 250,000 hours of 

annotator effort

Kristen Grauman, FAIR & UT Austin



Ego4D: for vision and beyond

Robotics

Speech

Language

3D 

Sensing

Audio

Augmented 

Reality

Computer 

Vision

Kristen Grauman, FAIR & UT Austin



21

Audio

2,207 hrs

IMU

836 hrs

Multiple 

synchronized 

ego-cameras

224 hrs

Stereo

80 hrs

3D 

environment 

scans

491 hrs

9 countries, 

74 cities



What we need to understand video

• The hierarchical structure of human behavior- movement, goals, actions 
and events e.g. Barker and Wright (1954).



Temporal scales of human motion

Detection;

Kinematic

state

Movemes Actions Activities

1/30 s 1/3 s 1-3s minutes or longer

Representation

Time Scale

Representations with more complex semantics are at longer time scales

Activity

steps

seconds

to minutes



The multiple spatiotemporal scales

• The finest scale can be understood as physical action, but the larger 
scales are best understood in terms of goals and intentionality

ACTION = MOVEMENT + GOAL



What position does Harry play on the 
Quidditch team?

•Answer: Seeker

What does the Sorcerer's Stone do?
•Answer: It produces the Elixir of Life which 
makes the drinker immortal, and can also 
turn any metal into pure gold.

What is the name of the Mirror which had the 
Sorcerer’s Stone hidden within it?

•Answer: The Mirror of Erised



or  we could just  watch the movie!



Movies allow learning perception and 

reasoning over goals, behaviors & intents of 

agents in a rich dynamic contextual setup. 

Visual 
World 

in 
Hours



Two uses of video

•Exteroception
• It teaches us about the external world. We build mental models of 

behavior (physical, social..) and use them to interpret, predict and 
control

•Proprioception
• It tells me about my current state in the world. Helps produce an 

episodic memory situated in space and time, and guides action in 
a context-specific way



EgoSchema: An unsolved problem in long-range 
video understanding

Karttikeya 

Mangalam

Raiymbek 

Akshulakov

Jitendra

 Malik

UC Berkeley

NeurIPS 2023



Long Video

!=
Long Temporal Understanding 

Task

Q: What water 
activity is being

Shown? (Action 
classification)

A: Swimming

Q: What swimming 
stroke are 

They doing? 
A: Butterfly  stroke

Q: How did 
michael  phelps 

position change 
over the race?

A: …



How to Make this notion of 
Long Temporal task precise? 



Temporal Certificates

The smallest set of sub-clips 

that are both necessary and 

sufficient (on its own) to 

convince a human verifier of 

the veracity of the marked 

annotation



Certificates for 15 video 
datasets & benchmarks

All existing video dataset have very 

small temporal certificate lengths, 

with most popular datasets being 

less than 2 seconds. 

Even the longest dataset (LVU) is 

less than 20 seconds. 



Nothing works!

Benchmarking State-of-the-art On EgoSchema



Benchmarking Human Performance On Egoschema

A huge gap exists between 
current SOTA model and 

human performance
 on EgoSchema

We believe this presents a very exciting 

opportunity for future research!



Is scaling token-based LLM like models the answer ?

• Doesn’t capture the essence of the 4D world 

• Complexity likely to be too high

• …



Book Name Word Count
Movie Length 

(min)
Number of 

Frames (x60x24)

Number of 
Tokens (x196)

"The Great Gatsby" by F. Scott Fitzgerald 47.0 K 143 205.9 K 40.4 M

"Sorcerer's Stone" by J.K. Rowling 78.0 K 152 218.9 K 42.9 M

"The Hobbit" by J.R.R. Tolkien 95.0 K 169 243.4 K 47.7 M

"Pride and Prejudice" by Jane Austen 120.0 K 129 185.8 K 36.4 M

"The Shining" by Stephen King 200.0 K 146 210.2 K 41.2 M

"To Kill a Mockingbird" by Harper Lee 100.0 K 129 185.8 K 36.4 M

"The Godfather" by Mario Puzo 144.0 K 175 252.0 K 49.4 M

"Jurassic Park" by Michael Crichton 127.0 K 127 182.9 K 35.8 M

"Gone with the Wind" by Margaret Mitchell 418.0 K 238 342.7 K 67.2 M

"Lord of the Flies" by William Golding 60.0 K 92 132.5 K 26.0 M
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Multiscale Vision Transformers 
(MViT)

Haoqi Fan*, Bo Xiong*, Karttikeya Mangalam*, Yanghao Li*, Zhicheng
Yan, Jitendra Malik, Christoph Feichtenhofer*

Facebook AI Research (FAIR)

* Equal technical contribution 

github.com/facebookresearch/pytorchvideo

github.com/facebookresearch/SlowFast



Motivation

Visual pathways are made up of hierarchical multiscale representations

[1] Van Essen, David C., and Jack L. Gallant. "Neural mechanisms of form and motion 
processing in the primate visual system." Neuron 13.1 (1994): 1-10.



Motivation

Neocognitron

Laplacian Pyramid Codes

Gaussian Image Pyramids

[1] Fukushima, Kunihiko, and Sei Miyake. "Neocognitron: A self-organizing neural network model for a mechanism of 
visual pattern recognition." Competition and cooperation in neural nets. Springer, Berlin, Heidelberg, 1982. 267-285.
[2] Burt, Peter J., and Edward H. Adelson. "The Laplacian pyramid as a compact image code." Readings in computer vision. 

Morgan Kaufmann, 1987. 671-679.



Status quo: Video Recognition with 3D CNNs

C1

C3C2

T

C

H,W

4D tensors of shape T x H x W x C

p
re

d
ictio

n

(T) x H x W shrinks, C grows.

e.g. 1x1x1 & 3x3x3 convs. 



Vision Transformers (ViT)

THW constant, C constant.

1x1 convs & TxHxW attention. 

Trans-
former

C1

C

T,H,W

2D tensors of shape THW x C

p
re

d
ictio

n
Trans-
former

C1

Trans-
former

C1

“Patchification” + projection
a.k.a. strided conv

Spatiotemporal clips



Multiscale Vision Transformers (MViT)

H

C

scale1 scale2 scale3

Spatiotemporal clips

1 2 3 4

N



Multiscale Vision Transformers
Multiscale Vision Transformers (MViT)



MViT:
(1) Pooling attention 

• Multi Head Pooling Attention (MHPA)

• Pooling either Key & Value (PK
 & PV) or Query (PQ) 

• Pooling Attention (PA): 

• Pooling K, V reduces attention computation
• Pooling Q reduces output dimension

• Channel expansion is done with the MLP block of the 
previous stage



Status quo: ImageNet ViT-B

• Video deals with a 𝑇-times longer 
sequence length vs. image transformers; 
e.g. ViT-B becomes the following



ViT vs. MViT
(2) Stage design

ViT

MViT

MHPA = Multihead Pooling Attention 



ViT-B (red) vs. MViT-B (blue)



Ablations: Two scales in ViT



Pooling Q / [K, V] / both+ stages

PQ – 46G flops (DeiT-S)

No pooling, – 56G flops (DeiT-S)

PK,V – 48G flops (DeiT-S)

PQ,K,V + grow width – 35G flops



ViT vs. MViT: Instantiations

ViT-B MViT-B



Ablations: K,V pooling



Ablations: Pooling kernel & function



Ablations: Skip-connections at stage-transitions



Multiscale attention heads

72

142

282

head1 head2 head3 head4

scale3

scale4

scale5



Comparison to concurrent work on Kinetics

• Accuracy/computation trade-off 

• 3 concurrent video transformers
• require up to 10x more computation

• rely on ImageNet-21K to be 
competitive in accuracy
• IN-21K has 60x more labels than 

Kinetics-400 (and some classes overlap)

[78] Neimark, Bar, Zohar, Asselmann (arXiv 2021). Video Transformer Network

[6] Bertasius, Wang, Torresani (arXiv 2021). Is Space-Time Attention All You Need for Video Understanding?

[1] Arnab, Dehghani, Heigold, Sun, Lučić, Schmid (arXiv 2021). ViViT: A Video Vision Transformer



The questionable (1)

Are Transformers really better than CNNs?

[1] Neimark, Bar, Zohar, Asselmann (arXiv 2021). Video Transformer Network

[2] Bertasius, Wang, Torresani (arXiv 2021). Is Space-Time Attention All You Need for Video Understanding?

[3] Arnab, Dehghani, Heigold, Sun, Lučić, Schmid (arXiv 2021). ViViT: A Video Vision Transformer

[3] 
[2] 

[1] 

• At large-scale, yes

• Smaller scale, no

• Setting has to be fair

• e.g., IN-21K has 60x more 
labels than Kinetics-400 
• (and some classes overlap)

• IN-21K: 100+ “snake” classes

• IN-1K: ~15 ”snake” classes

• K400: “holding snake” class

[3] 

[2] 

[1] 



The questionable (1)

Are Transformers really better than CNNs?

Ablation: Training throughput measured in clips/s

• Transformers are faster on GPUs

§§§ §§§§§§

3.4x 
faster

+ 5.8% 
top-1



The questionable (2)

MViT vs. ViT: Shuffling input frames



The questionable (2) 

Vanilla positional embedding is not very effective 



Comparison to prior work

12x fewer 
FLOPs



Applying the architecture to image classification

● Multiscale idea is space/time agnostic

● MViT on ImageNet: We simply remove 
temporal dimension

● Training deep MViT networks works out of 
the box
○ +2% over DeiT-B at lower FLOPs
○ +0.7% better than concurrent Swin-B at lower 

FLOPs/Params
● Multiscale Vision Transformers perform 

state-of-the-art on ImageNet, even though it 
was designed for video classification

● Code

ImageNet top-1 accuracy

github.com/facebookresearch/pytorchvideo

github.com/facebookresearch/SlowFast



Conclusion
• Multiscale Vision Transformers connect multiscale feature hierarchies with 

transformers

• MViT hierarchically expands feature complexity while reducing visual resolution

• In empirical evaluation, it shows advantage over single-scale vision transformers

• MViT achieves substantial gains with respect to concurrent transformers (ViT) 
across major video benchmarks at a fraction of the inference compute  

• Without using any external data: Other concurrent works report a failure to 
train video transformer models without ImageNet pre-training 

• For image recognition: MViT outperforms concurrent work on ImageNet and 
even though it has been designed for video

github.com/facebookresearch/pytorchvideo

github.com/facebookresearch/SlowFast



Learning Individual Styles of Conversational Gesture

CVPR 2019

Shiry Ginosar* Amir Bar* Gefen Kohavi Caroline Chan Andrew Owens Jitendra Malik









Sign language



Italianate



Related work

Cassell et al. 1994, Morency 2007, Levine et al. 2010

Conversational agents

Suwajanakorn 2017, Shlizerman 2017, Chung 2019

Sound-to-video

McNeil 1994, Kendon 2004

Psychology



Task: predict gesture from speech



Gestures dataset

10 subjects.

128 hours total.

Clean video intervals with frontal single speaker.

OpenPose detections for every frame.





How do gesture styles differ across speakers?



Predicting gestures

Pose

Audio



Predicting gestures

Pose

Audio

(100, 130)

(215, 145)

(110, 300)

(250, 320)

(400, 360)



Audio input

Predicting gesture



Audio input Predicted gestures

Predicting gesture



Audio input Synthesized video

using Chan et al., 2018

Predicted gestures

Face is ground truth

Synthesizing a video

Ground truth face



Method details

L1 regression loss

Real or Fake

Motion Sequence?

D

G(t1),…,G(tT)

G

Audio

Chan et al.



GAN loss snaps to individual styles of motion

No GAN GAN



GAN loss snaps to individual styles of motion

No GAN GAN



Examples with ground truth footage



Face is synthesized from ground truth.

Predicted

Ground

truth
Synthetic video

Face is ground truth.



Predicted

Ground

truth
Synthetic video

Face is ground truth. Face is synthesized from ground truth.



Predicted

Ground

truth Synthetic video

Face is ground truth. Face is synthesized from ground truth.



0

11.5

23

34.5

46

57.5

Random NN Median RNN* Ours, GAN Ours, no

GAN
Method

Quantitative evaluation

*[E.  Shlizerman et al. Audio to body dynamics. 2018]
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Prediction examples for other speakers

(with ground truth footage)



Mark Kubinec

(chemistry lecture)



Ground truth

Predicted from audio
Face is ground truth



–Johnny Appleseed

“Type a quote here.” 

Face is ground truth.Ground truth

Predicted from audio
Face is ground truth



Conan O’Brien



Ground truth

Predicted from audio
Face is ground truth



–Johnny Appleseed

“Type a quote here.” 

Face is ground truth.Ground truth

Predicted from audio
Face is ground truth



–Johnny Appleseed

“Type a quote here.” 

Face is ground truth.

Predicted from audio
Face is ground truth

Ground truth



Gestures are person specific.

L1 loss

For every speaker audio input (row) we apply all other individually trained speaker models (columns).



But we can still try to transfer!

Vladlen-to-Kubinec



http://people.eecs.berkeley.edu/~shiry/speech2gesture/

Poster #102

Tuesday, 15:20 –18:00

Exhibit Hall



http://people.eecs.berkeley.edu/~shiry/speech2gesture/

Thank you!

http://people.eecs.berkeley.edu/~shiry/speech2gesture/


Open questions in social perception

• Computers today have pitifully low “social intelligence”

• We need to understand the internal state of humans as they interact 

with each other and the external world

• This includes emotional state, body language, current goals. We 

currently are able to capture “surface manifestations”

• Hierarchical understanding of human behavior is the holy grail. 

Computer Vision can contribute to it and be aided by advances in it.
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