AVA: A Video Dataset of c
Atomic Visual Actions

CVPR 2018

Chunhui Gu, Chen Sun, David A. Ross, Carl Vondrick,
Caroline Pantofaru, Yeqing Li, Sudheendra
Vijayanarasimhan, George Toderici, Susanna Ricco,
Rahul Sukthankar, Cordelia Schmid, and Jitendra Malik




Answer phone




Climb (e.g., a mountain)
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Fall down




Give/Serve (an object) to (a person)

l -
Y :
B
'
-l B - s
d -




Hug (a person)

Hi SPANTV >




e

run/jog lie/sleep getup
walk bend/bow fall down
jump crawl crouch/kneel
stand swim martial art
sit dance

K Pose (14)/

>

¢

kick

(U

alkto  give/serve ... to ...
watch  take ... from ...
listento  play with kids
singto  hand shake

Kiss hand clap

hug hand wave

grab fight/hit

lift push

‘\\\

lift/pick up
put down

carry
hold
throw
catch
eat
drink
cut

hit

stir
press
extract

Person-person (17)/

read
write

smoke

sail boat
row boat
fishing
touch

cook

kick

paint

dig

shovel
chop
shoot

take a photo
brush teeth
clink glass

work on a computer ~ open \
answer phone close

climb (e.g., mountain) enter

play board game exit

play with pets

drive (e.g., a car)

push (an object)

pull (an object)

point to (an object)

play musical instrument
text on/look at a cellphone
turn (e.g., screwdriver)
dress / put on clothing
ride (e.g., bike, car, horse)

watch (e.g., TV)
Person-object (49)




| abel Annotation



Annotation Goal

Left: Kneel, Talk to
Right: Stand, Listen, Shoot



User Interface for Action Selection

Iistructions
1 s tanlh yous meed 30 dencribe o 80 Chree actionn prvioemed by the poros i e bovnding bos Checkbox

o Smtont bpo 29 V0 O for incorrect

o You con wne the o and dosen armow heys 1o Chonne o0
o Use the ub key 20 quicily swinch o the mest
o Eac Choans the selnction,

o Check "Oher action” if your seggesson Sub]ect Of

Person-object
interaction

subject box

actions

Dircribe xom prrformed by S peraon ie th aC“on
I orret Souesdegg boa Lnarvatlabie video (dur do srovoval Rk, ) - lnappvoprise viden (oot ey, horroe, viebenor, ot )
| <no action>
bend/bow (at the waist) Octuer sz
crawl <no action>
Oxher acion
crouch/kneel 2
d <no action>
ance Octwe acsion
dive
fall dowmn
getup
jumplleap Person-person
helsleep interaction
martial arnt acuons

rurvjog
st
stand
swim
walk

Autocomplete
Embedded

text box for
pose action

segment
video



W Person-Person ® Person-Object ™ Pose
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Around the World in 3,000
Hours of Egocentric Video

Jitendra Malik
Meta Al / UC Berkeley
This talk based on slides from Kristen Grauman and the Ego4D team



EG

&

).07058v1 [cs.CV] 13 Oct 2021

Ego4D team

Egod4D: Around the World in 3,000 Hours of Egocentric Video

Kristen Grauman'?, Andrew Westbury', Eugene Byrne*!, Zachary Chavis*?, Antonino Furnari*,
Rohit Girdhar*!, Jackson Hamburger*!, Hao Jiang*®, Miao Liu*®, Xingyu Liu*7, Miguel Martin*?,
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Jonathan Munro”, Tullie Murrell!, Takumi Nishiyasu'®, Will Price”, Paola Ruiz Puentes'?,
Merey Ramazanova'’, Leda Sari®, Kiran Somasundaram®, Audrey Southerland®, Yusuke Sugano'®,
Ruijie Tao'!, Minh Vo®, Yuchen Wang'®, Xindi Wu”, Takuma Yagi'®, Yunyi Zhu'?,

Pablo Arbelaez' ', David Crandall’*®, Dima Damen', Giovanni Maria Farinella',
Bernard Ghanem''’, Vamsi Krishna Ithapu'®, C. V. Jawahar''”, Hanbyul Joo'!, Kris Kitani'”,
Haizhou Li'"!, Richard Newcombe'®, Aude Oliva™®, Hyun Soo Park®, James M. Rehg®,
Yoichi Sato''?, Jianbo Shif'?, Mike Zheng Shou'*!, Antonio Torralba'®,

Lorenzo Torresani''2°, Mingfei Yan'®, Jitendra Malik'-®

!Facebook Al Research (FAIR), ?University of Texas at Austin, *University of Minnesota, *University of Catania,
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'King Abdullah University of Science and Technology, ' National University of Singapore,
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Why egocentric video?
Robot learning

Robots that can learn from video how to manipulate human-
EG& s centric objects and navigate in human-centric spaces



First-person perception and learning

Status quo:

Learning and inference with
“disembodied” images/videos.

$

On the horizon:

Visual learning in the context
of agent goals, interaction, and
multi-sensory observations.

Kristen Grauman, FAIR & UT Austin



Existing first-person video datasets

Inspire this effort, but call for greater scale, content, diversity

GOAL

#hours *

#scenes

EPIC Kitchens
Damen et al. 2020
45 people, 100 hrs
kitchens only

Ego4D \

#people
N /

Kristen Grauman, FAIR & UT Austin

EG& N4

Ch arades-Ego
Sigurdsson 2018
71 people, 34 hrs
indoor



Ego4D: a new massive egocentric video dataset

Goal: Large-scale “in the wild” first-person video dataset
Catalyze research in multimodal egocentric perception

Content:
« 3,025 hours of video from 74 cities & 9 countries
« 855 unique camera wearers — not just graduate students!
« Dally life activities — work, home, shopping, commute, street
- Multi-modal sensing: audio, 3D scans, IMU, stereo, multi-camera
« Benchmark challenge for the research community

Timeline:
« Collection began early 2020
« Paper released last week, data will be released late Nov 2021



Ego4D consortium

Towards geographically diverse ego-video coverage

SN  Bristol S

Al U. Minnesota &

B U. Indiana & MIT H atania _
. : U. Tokyo
Facebook MU upenn KAUST 2 :
Georgia Tech | CMU Africa IIT Hyderabad

U of Los ndes

B — -

Natl U. _
Singapore .



855 camera wearers

Self-reported demographics and countries of residence

Musician  Landscaper Chef  construction Worker Coffeeshop Worker ~ Aborist
80+ I Psychologist Painter . Baker £ 8 Manager Nail Technician Shopkeeper
Freelancer ~ Artist Electrician Repair Technician Carpenter
75-79 I Photographer PhD Student P

- : : Model Government Employee

70-74 B besigner Software Engineer Admilmictrator e
Hairdresser ~ Engineer

65-69 |

y Machinist ~ Researcher
Farmer Housewife

‘Qyﬂ? Trainer Homemaker

60-64 - editor Teacher Business Executive
55-59 Academic Data Analyst IT Technician
Social Scientist  Artisan
50_54 _ Finance Officer Unemp|oyed
Architect Greenhouse Support

45-49 N imator

Student ibrarian

Kinesiologist ~ Bookseller

Self-Employed Nurse
Mechanic Charity Worker
Store Owner

Pharmacist
Counsellor

Agronomist

Retired

Kindergarten Worker
140 Psychotherapist

EG& N4

Kristen Grauman, FAIR & UT Austin



Dally-life scenarios

How people spend their days: US Bureau of Labor Statistics

Everyday activities in the home: Errands Entertainment/Leisure Exercise:

® Sleeping ® Grocery shopping ®\\atching movies at cinema ® Going to the gym

® Daily hygiene ® Clothes, shopping ® \Watching tv ® Yoga practice

® Doing hair/make-up ® Gettina car fixed ® Reading books ® Swimming in a

® Cleaning / laundry pool/ocean

® Cooking Working out at home
® Talking with family me Cycling / jogging

® Hosting a party Dancing

® Eating Key tenet in Eg O4D Working out outside

® Yardwork / shoveling Walking on street

e Household managent. c@PtUre unscripted, daily-life activity &oing o the park

for kids Hiking
® Fixing something in tf ansportation:
® Playing with pets Car - commuting,
® Crafting/knitting/seWiligrurcvvirg: ® Attenading a e e road trip
painting/etc lecture/class ® BBQ'ing/picnics ®BusS
® Writing on whiteboard ® Going to a salon (nail, hair, spa) ® Train
® Video call ® Getting a tattoo / piercing ® Airplane
® Eating at the cafeteria ® Yolunteering ®Bike
® Practicing a musical instrument @ Skateboard/scooter

® Making coffee
- . . @®Attendina a fe<tival or fair https://www.bls.gov/news.release/atus.nr0.htm



https://www.bls.gov/news.release/atus.nr0.htm

Dally-life scenarios

Wide variety of activity in the home, workplace, outdoors, errands

. Playing badminton Walking the pet
Fixing something in the home o))
Baseball Car - commuting Attending a party
sweetart 1alking on the phone Handyman
Listening to music Assembling a puzzle  Attending a lecture/class
Takingphotes  VWalking on street Playing with pets
Dally hygiene Campmg Gardening Taking the bus
Other Walking indoors Cycling / jogging Making coffee
31% Attending sporting events Potting plants
Watching tv  Attending a TA session
Hostingaray OQn a screen (phone/laptop)
Going to the gym Working out outside Bike mechanic
Playing video games Baker BasketBall
. . Golfing
Making Bricks Fishing
Going to the park Working at desk Hiking

Scooter mechanic °*"¢ Eating at a restaurant
Playing cards Talking to colleagues

Construction
9%
- D

P

Climbnig

/

EG& N4

Kristen Grauman, FAIR & UT Austin



Wearable cameras

Vuzix Blade Pupil Labs ZShade WeeView

We deploy a variety of head-mounted cameras.

EG& N4

Kristen Grauman, FAIR & UT Austin



Privacy and ethics

* Mobllized leading experts In first-person video capture, with
expertise in privacy, de-identification, and responsible in-the-
wild data collection

« Each partner underwent separate months-long IRB review
process, overseeing ethical and privacy standards for data
collection, management, and informed consent.

« Consent forms signed by all recorded people where relevant

 State-of-the-art de-identification processes, featuring
both automated and manual reviews for faces, screens, credit
cards, and other identifiers

EG& N4

Kristen Grauman, FAIR & UT Austin



Ego4D data: everyday activity around the world

3,025+ hours of video

o 855+ camera wearers
Geographic diversity
Occupational diversity
Unscripted daily life activity

Kristen Grauman, FAIR & UT Austin



Ego4dD data: everyday activity around the world

3,025+ hours of video

o 855+ camera wearers
Geographic diversity
Occupational diversity
Unscripted dalily life activity

Kristen Grauman, FAIR & UT Austin



Ego4D data: 3D environment scans

EGO4D@UNICT

Examples .

Available
3D for 491
hours of
video
Baker (A007 > 9.5 hrs of videos) Carpenter (A011 > 7hrs of videos) 1> 9.5 hrs of videos)
FloorPlan

EGO




Ego4D data: multi-camera and eye gaze

Kristen Grauman, FAIR & UT Austin

Eye gaze



Ego4D benchmark suite

\ Episodic Memory

“‘where is my X?”

J

Present

Audlo -visual Dlarlzat|on Social Interaction
E Gm “‘who said what when?” “‘who is attending to whom?”

Present

Hands & Objects /

“what am | doin_g and how?”

Future

Forecastin
>/ y

“what will | do next?

. )




Annotation: text narrations

Dense
descriptive text
of each camera
wearer activity
+ clip-level
summaries

#C C picks up another putty knife from the white board
K™ ) |

13 sentences
per minute

4M sentences
on 3,025 hours

Kristen Grauman, FAIR & UT Austin
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Annotation: benchmarks

A -~
4 iy

More than 250,000 hours of
annotator effort

ns (text)

emporal labels
1ts

objects
hanges

dal labels

+response

« Speech transcript

7’y "‘7 ' ., “‘u 4 7 AN Jueryv
What did | put in the drawer? / ‘n ,r't* A . [‘%
L7 - ¥ l. ‘ ‘ ‘- ‘. b ,\d\.
Interact with pet —— Sweep floor
Use phone

Kristen Grauman, FAIR & UT Austin



Ego4D: for vision and beyond

Computer
Vision

3D

: Augmented
Sensing

Reality

Robotics Language

EG& N4

Kristen Grauman, FAIR & UT Austin



Multlple
' synchronized
. ego-cameras
224 hrs

$
9 countrlec§207

74 cities

Gardening " ¥4

| s h.:""
Audio

.:‘ " ) ; ; .~ .‘ - i 3 L 79 A “ ‘. ! - :. ,.
=<\ ' ' e * . ] | environment

o oy - ' W scans
i + 3D
EG / Video scans 491 hrS 21



What we need to understand video

* The hierarchical structure of human behavior- movement, goals, actions
and events e.g. Barker and Wright (1954).

Y

CONTINULUM A B

A TO B: STEPPING DOWN FROM THE CURB

ATO C: CROSSING STREET

A TO D: WALKING TO SCHOOL

A TO E: WORKING TO "PASS" FROM THE THIRD GRADE
A TO F: GETTING AN EDUCATION

A TO G: CLIMBING TO THE TOP IN LIFE



Temporal scales of human motion

Representation
Detection;
Kinematic Movemes Actions Activity Activities
state steps
1/30 s 1/3 s 1-3s secgnds minutes or longer
to minutes
Time Scale

Representations with more complex semantics are at longer time scales



The multiple spatiotemporal scales

* The finest scale can be understood as physical action, but the larger
scales are best understood in terms of goals and intentionality

ACTION = MOVEMENT + GOAL



INC

What position does Harry play on the
Quidditch team?
Answer: Seeker

What does the Sorcerer's Stone do?
*Answer: It produces the Elixir of Life which
makes the drinker immortal, and can also
turn any metal into pure gold.

What is the name of the Mirror which had the
Sorcerer’s Stone hidden within it?
eAnswer: The Mirror of Erised



or we could just watch the movie!




Visual
World
1N
Hours

Movies allow learning perception and
reasoning over goals, behaviors & intents of
agents in a rich dynamic contextual setup.




Two uses of video

* Exteroception

* |t teaches us about the external world. We build mental models of
behavior (physical, social..) and use them to interpret, predict and
control

* Proprioception
* It tells me about my current state in the world. Helps produce an

episodic memory situated in space and time, and guides action in
a context-specific way



EgoSchema: An unsolved problem in long-range
video understanding

NeurlPS 2023

- }

Karttikeya Raiymbek Jitendra
Mangalam Akshulakov Malik

D> UC Berkeley
{@%{?RMR Berkeley

L INTELLIGENCE RESEARCH UNIVERSITY OF CALIFORNIA




Long Video

Q: What water sw1mm1ng Q: How did
activity is being stroke michael phelps
Shown? (Action They d ilﬁ position change
classification) A: But®rfly stroke over the race?

“Tong Temporal Understanding
Task



How to Make this notion of
Long Temporal task precise?



Marked Ground Truth

Certified!

Minimum
Certificate Set

85 100 150-180

Temporal Certificates

The smallest set of sub-clips
that are both necessary and
sufficient (on its own) to
convince a human verifier of
the veracity of the marked
annotation



100 U

EgoSchema
Certificates for 15 video
80 1 2. T
datasets & benchmarks ” UCF101 Kinetics
Something- HVU- HOW2QA
‘:EO Something Action O
&5 60 - |
— 1.00
% HVU- -
All existing video dataset have very £ A SR srvTT
small temporal certificate lengths, 8oz Youuberar von®

with most popular datasets being 75 160 75
less than 2 seconds.

20 -

AGQA LVU

ActivityNet-QA
Even the longest dataset (LVU) is o] |Add ,@Nexm

less than 20 seconds. 5 = 100 150 200
Video Clip Length




Benchmarking State-of-the-art On EgoSchema

Inference  Evaluation QA

Model Release Params Setting Acc
Choosing the correct A uniformly at random 20.0%
: 10 frames | 26.4%
FrozenBiLM [57] Oct 2022 1.2B 90 frames | 26.9%
5 frames 19.9%
VIOLET [14] Sept 2022 198M 75 frames | 19.6%
I frame 27.0%
5 frames | 31.1%
mPLUG-Owl [59] | May 2023 7.2B 10 frames | 29.6%
15 frames | 28.7%
30 frames | 20.0%
10 frames | 31.4%
InternVideo [4£] Dec 2022 478M 30 frames | 31.8%
90 frames | 32.1%

Nothing works!

7B+ parameter SOTA video &
language models achieve
< 33% MCQ accuracy

(random accuracy is 20%)



Benchmarking Human Performance On Egoschema

Evaluation Setting | QA Accuracy
180 trames 67.2% A huge gap exists between
In <1 min 67.0% current SOTA model and
In <3 min 68.0% human performance

on EgoSchema
No constraint 75.0%
Video — Text 76.2%

We believe this presents a very exciting
opportunity for future research!



s scaling token-based LLM like models the answer ?

* Doesn’t capture the essence of the 4D world
 Complexity likely to be too high



Book Name Word Count | 0! | tor)  Tokens nasd
"The Great Gatsby" by F. Scott Fitzgerald 47.0 K 143 205.9K 40.4 M
"Sorcerer's Stone" by J.K. Rowling 78.0K 152 218.9K 42.9 M
"The Hobbit" by J.R.R. Tolkien 95.0 K 169 243 .4 K 47.7 M
"Pride and Prejudice" by Jane Austen 120.0 K 129 185.8 K 36.4 M
"The Shining" by Stephen King 200.0K 146 210.2 K 41.2 M
"To Kill a Mockingbird" by Harper Lee 100.0 K 129 185.8 K 36.4 M
"The Godfather" by Mario Puzo 144.0 K 175 252.0K 49.4 M
"Jurassic Park" by Michael Crichton 127.0 K 127 182.9 K 35.8 M
"Gone with the Wind" by Margaret Mitchell 418.0 K 238 342.7 K 67.2 M
"Lord of the Flies" by William Golding 60.0 K 92 132.5K 26.0 M




Book Name

"The Great Gatsby" by F. Scott Fitzgerald
"Sorcerer's Stone" by J.K. Rowling

"The Hobbit" by J.R.R. Tolkien

"Pride and Prejudice" by Jane Austen

"The Shining" by Stephen King

"To Kill a Mockingbird" by Harper Lee

"The Godfather" by Mario Puzo

"Jurassic Park" by Michael Crichton

"Gone with the Wind" by Margaret Mitchell
"Lord of the Flies" by William Golding

Youtube

Word Count

47.0 K
78.0K

95.0 K
120.0K
200.0 K
100.0 K
144.0K
127.0K
418.0 K
60.0 K

Movie Length
(min)

143
152

169
129
146
129
175
127
238
92

9.48B

Number of
Frames (x60x24)

205.9 K
218.9K

243.4 K
185.8 K
210.2 K
185.8 K
252.0K
182.9K
342.7 K
132.5K

13478.4 B

Number of
Tokens (x196)

40.4 M
429 M

47.7 M
36.4 M
41.2 M
36.4 M
49.4 M
35.8 M
67.2 M
26.0 M

26418 T




Book Name

"The Great Gatsby" by F. Scott Fitzgerald
"Sorcerer's Stone" by J.K. Rowling

"The Hobbit" by J.R.R. Tolkien

"Pride and Prejudice" by Jane Austen

"The Shining" by Stephen King

"To Kill a Mockingbird" by Harper Lee

"The Godfather" by Mario Puzo

"Jurassic Park" by Michael Crichton

"Gone with the Wind" by Margaret Mitchell
"Lord of the Flies" by William Golding

Youtube

Llama-2

Word Count

47.0 K
78.0K

95.0 K
120.0K
200.0 K
100.0 K
144.0K
127.0K
418.0K
60.0 K

Movie Length
(min)

143
152

169
129
146
129
175
127
238
92

9.48B

Number of
Frames (x60x24)

205.9 K
218.9K

243.4 K
185.8 K
210.2 K
185.8 K
252.0K
182.9K
342.7K
132.5K

13478.4 B

Number of
Tokens (x196)

40.4 M
429 M

47.7 M
36.4 M
41.2 M
36.4 M
49.4 M
35.8 M
67.2 M
26.0 M

26418 T

2T




facebook Artificial Intelligence Research

1>2 PyTorchVideo

Multiscale Vision Transformers
(MVIT)

Haoqi Fan*, Bo Xiong*, Karttikeya Mangalam®*, Yanghao Li*, Zhicheng
Yan, Jitendra Malik, Christoph Feichtenhofer*

Facebook Al Research (FAIR)

github.com/facebookresearch/pytorchvideo
github.com/facebookresearch/SlowFast

* Equal technical contribution



Motivation

Visual pathways are made up of hierarchical multiscale representations

WHERE? {Motion,
Spatial Relationships)
[Parietal stream]

PP | :

WHAT? (Form, Color)
[Inferotemporal stream)

G ) AlT,

RECEPTIVE FIELDS OF OPTIC NERVE FIBRES IN THE
SPIDER MONKEY

By D. H. HUBEL anp T. N. WIESEL

3
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magic-dem nated
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20D stream
blob-dom nated

o |
From the Neurophysiology Laboratory, Department of Pharmacology, ek T terbioo-dorrinate

Harvard Medical School, Boston, Mass., U.S.A.
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Motivation

Laplacian

Pyramid
&
B
p; ) &
shared connections .
= gpatial filterin : .
pierl‘t?::n . =ngw_~,|uﬁ0n 9 ) Laplacian Pyramid Codes
Blur and Lnk:‘d‘xm
subsample |
. wim hr * ll’Bl!l‘:..okgia
eﬁggtﬁn pooling recognition snrele  fo e
(S-cells) (C-cells) (classification) Blur and
Neocognitron Sl

[1] Fukushima, Kunihiko, and Sei Miyake. "Neocognitron: A self-organizing neural network model for a mechanism of
visual pattern recognition." Competition and cooperation in neural nets. Springer, Berlin, Heidelberg, 1982. 267-285.

[2] Burt, Peter J., and Edward H. Adelson. "The Laplacian pyramid as a compact image code." Readings in computer vision.
Morgan Kaufmann, 1987. 671-679.

Gaussian Image Pyramids



Status quo: Video Recognition with 3D CNNs

4D tensors of shape Tx Hx W x C

H

\T/'

) x Hx W shrinks, C grows.

uolld1pald

e.g. 1x1x1 & 3x3x3 convs.



Vision Transformers (ViT)

" e e . 2D tensors of shape THW x C
Patchification” + projection -

a.k.a. strided conv
Ya A
v Trans- Trans- Trans-
‘ — — — —_—
kv - former former former
C, C, C,

Spatiotemporal clips \ T /

THW constant, C constant.

L.

uo1dipaud

1x1 convs & TxHxW attention.



Multiscale Vision Transformers (MViT)

clips

Spatiotempora




Input Scaleq Scale> Scales



MVIT:
(1) Pooling attention

* Multi Head Pooling Attention (MHPA)
* Pooling either Key & Value (PX& PV) or Query (PQ)

* Pooling Attention (PA):

PA(-) = Softmax(P(Q; ©¢)P(K; ©)" /VA)P(V; Oy)

* Pooling K, V reduces attention computation
* Pooling Q reduces output dimension

e Channel expansion is done with the MLP block of the
previous stage

T

{ Add & Norm ]

PN

THW x D
[ MatMul ]
T A
Softmax ]
TIHW x TIHW THW x D
[ MatMul & Scale J
TQfﬁﬁ/x D TKTHWXD
[ Pool J [ POAOIQ ] [ Pool J [ Pool y/ ]
QTHWXD AKTHWXD AVTHWXD
[ Linear ] [ Linear ] [ Linear }
A A A

I THW x D




Status quo: ImageNet VIT-B

* Video deals with a T-times longer
sequence length vs. image transformers;
e.g. ViT-B becomes the following

stage operators output sizes
data layer| stride 7Xx1Xx1 T'x HxW
1x16x16,D
patchq DxTx L x W

stride 1 x 16X 16 16 7 16

MHA(D) H W
scaleo [MLP(LLD) :|><N D x'T"x




ViT vs. MVIT
(2) Stage design

ViT
stage operators output sizes
data layer stride 7 | X X H X
patch .X o X T X 22 X
stride 1 X 16X
scaleo {MHA( )}X XT'X == X
MLP(4 D)

MVIT
stages operators output sizes

data layer stride 7x 1 x 1 DxTxHxW
CT XCE XCW , D T H 1%.%

DX — X=X

cuber stride s X4 x4 sp 47 4
MHPA (D) T UH_ W

scaleo [ MLP(4D) :|><N2 stTx T X7
[ MHPA(2D) | T UH_W

scales | MLPGRD) X N3 2D><8 X o X3
MHPA(4 D) T UH_W
scaleg | MLP(16D) XNa| 4DX% e X165 X 16
| MHPA(8D) | T H_W
scales | MLP(32D) X N5 | 8DX s X35 X33

MHPA = Multihead Pooling Attention



ViT-B (red) vs. MViT-B (blue

topl_error

20 40 60 80 100 120 140 160 180 m

epoch



Ablations: Two scales in ViT

variant [N1,N2] |[FLOPs (G) Mem (G) |Acc
ViT-B [12,0] [179.6 16.8 68.5
2-scale ViT-B, @ pool| [6,6] |111.1(—68.5) 9.8 (—7.0)|71.0 (+1.5)
ViT-B, K, V pool [12,0] |148.4 (—31.2) 8.9 (—-7.9)[69.1 (+0.6)

Table 8. Query (scale stage) and Key-Value pooling on ViT-B.
Introducing a single extra resolution stage into ViT-B boosts ac-
curacy by +1.5%. Pooling K,V provides +0.6% accuracy. Both
techniques allow dramatic FLOPs/memory savings.



topl_error
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Pooling Q. / [K, V] / both+ stages
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= .
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Po —46G flops (DeiT-S)
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Po kv + grow width — 35G flops



VIT vs. MVIT: Instantiations

ViT-B MViT-B
stage operators output sizes stage operators output sizes
data stride 8 x 1 x 1 X X data stride 4 x 1% 1 16 X224 %224
1 x16x%x16, 768 3XTxT,96
’ cube : 96 X8 X 56 xX56
PatChi]  (ide 1x 16x 16 e Ll stride 2x4 x4
[ MHA(768) | MHPA(96)
scales | MLP( ) X 12 X 8% 14 X% scales | MLPG84) X 1 96 X8 X 56X56
MHPA(192)
scales _ MLP(768) | X2 192X 8% 28 %28
| MHPA(384) |
scaley MLP(1536) X11 | 384x8x14x14
scales ﬁ?ﬁ%(ggg)) X2 TOH8XEXTXT

(a) ViT-B with 179.6G FLOPs, 87.2M param, (b) MViT-B with 70.3G FLOPs, 36.5M param,
16.8G memory, and 68.5% top-1 accuracy. 6.8G memory, and 77.2% top-1 accuracy.



Ablations: K,V pooling

?

{ Add & Norm }
o xp
( MatMul

i

[

Softmax ]

T THW x THW THW x D

MatMul & Scale v
b i D THW x D
K

Q

Poolg ]

[ PO?IQ ] [ P():)l,( ] [ Pooly, }

stride s | adaptive | FLOPs Mem | Acc

none n/a 130.8 16.3 77.6
1 x4x4 714 8.2 75.9
2x4x4 64.3 6.6 74.8
2x4x4 v 83.6 9.1 77.1
1 x8x8 v 70.3 6.8 77.2
2x8%8 v 63.7 6.3 75.8

Table 12. Key-Value pooling: Vary stride s = s X sg X sw, for
pooling K and V. “adaptive” reduces stride w.r.t. stage resolution.

E
. THW x D LW x D THW > D
V

[ Linear J [ Linear ] Linear

THW x D
X




Ablations: Pooling kernel & function

?

{ Add & Norm }
o xp
( MatMul

i

[ Softmax ]
T THW x THW THW x D

r S
THW x D

Q

MatMul & Scale v
THW x D

Po

O]Q ]

[ PO?IQ ] [ P():Jl,( ] [ Pool y- }

kernel k | pooling func | Param Acc
S max 36.5 76.1

2s + 1 max 36.5 75.5
s+ 1 max 36.5 77.2
s+ 1 average 36.5 75.4
s+ 1 conv 36.6 78.3
3x3x%3 conv 36.6 78.4

E
. THW x D LW x D THW > D
K

Q
Linear

[ Linear | [ Linear ]

THW x D
X

Table 13. Pooling function: Varying the kernel k as a function of
stride s. Functions are average or max pooling and conv which is a

learnable, channel-wise convolution.




Ablations: Skip-connections at stage-transitions

THW % D, THW % Dy, THW x Dy,
N Norm
orm Norm method top-1 top-5
(a) normalized skip-connection 77.2 93.1
(b) unnormalized skip-connection 74.6 91.3
MITP v (©) no skip-connection 74.7 01.8
MLP MLP Table A.4. Skip-connections at stage-transitions on K400. We
- 7 |Lmear (Dyy, Do) use our base model, MViT-B 16x4. Normalizing the skip-
THW > Douy ILme"“ (Din Dou)]  THW > Doy ! B connection at channel expansion is essential for good performance.
+ /% out
(- )<—|
v v v
(a) normalized (b) unnormalized (¢c) no

skip-connection skip-connection skip-connection



Multiscale attention heads
head, head, head, head,

scale;

scale



Comparison to concurrent work on Kinetics

* Accuracy/computation trade-off 280 2
§75—;
. = "3
* 3 concurrent video transformers E
. . 270 -
* require up to 10x more computation £
* rely on ImageNet-21K to be EGS_
competitive in accuracy B

—

—

A IN-21K
— IN-21K IN-21K
- —
+4.6% acc T —~— __
at 1/5 FLOPs T~
at I /3 Params N-1K
without ImageNet

-—4--- MViT-B 16x4
—a— MViT-B 32x2

[1] ViViT-L ImageNet-21K
= [6] TimeSformer ImageNet-21K
—— [7/8] VTN ImageNet-1K / 21K

* IN-21K has 60x more labels than 1
Kinetics-400 (and some classes overlap)

[78] Neimark, Bar, Zohar, Asselmann (arXiv 2021). Video Transformer Network
[6] Bertasius, Wang, Torresani (arXiv 2021). Is Space-Time Attention All You Need for Video Understanding?
[1] Arnab, Dehghani, Heigold, Sun, Lu¢i¢, Schmid (arXiv 2021). ViViT: A Video Vision Transformer

2 3 4 5

Inference cost per video in TFLOPs (# of multiply-adds x 10"?)




* e.g., IN-21K has 60x more
labels than Kinetics-400
e (and some classes overlap)
e IN-21K: 100+ “snake” classes
* IN-1K: ~15 “snake” classes
* K400: “holding snake” class

[1] Neimark, Bar, Zohar, Asselmann (arXiv 2021). Video Transformer Network

Fast, 16x8 + NL

Fast, 8x8, R101 + NL
-B, 16x4

-B, 32x3

-L ImageNet-21K
Sformer ImageNet-21K
ImageNet-1K / 21K

1010 101t 1012
Testing cost (number of mult-add operations)

[2] Bertasius, Wang, Torresani (arXiv 2021). Is Space-Time Attention All You Need for Video Understanding?
[3] Arnab, Dehghani, Heigold, Sun, Lu¢i¢, Schmid (arXiv 2021). ViViT: A Video Vision Transformer



The questionable (1)
Are Transformers really better than CNNs?

 Transformers are faster on GPUs

model clips/sec Acc FLOPsx views | Param
X3D-M [27] 7.9 74.1 4.7x1x5 3.8
SlowFast R50 [28] 5.2 75.7 65.7x1x5 34.6
SlowFast R101 [28] 3.2 77.6 125.9x1x%5 62.8
ViT-B [24] 3.6 68.5 179.6 x1x5 87.2
top-1 MViT-S, max-pool 12.3 74.3 32.9x1x5 26.1 1 faster
MViT-B, max-pool 6.3 77.2 70.3x1x5 36.5

Ablation: Training throughput measured in clips/s



The questionable (2)
MVIT vs. ViT: Shuffling input frames

model shuffling FLOPs (G) Param (M) Acc
MViT-B 77.2
MViT-B v 703 36:3 70.1 (—7.1)
ViT-B 68.5
179. 2
ViT-B v 796 87 68.4 (—0.1)

Table 7. Shuffling frames in inference. MViT-B severely drops
(—7.1%) for shuffled temporal input, but ViT-B models appear to
ignore temporal information as accuracy remains similar (—0.1%).



The questionable (2)
Vanilla positional embedding is not very effective

positional embedding Param (M) Acc
(i) none 36.2 75.8
(ii) space-only 36.5 76.7
(iii) joint space-time 38.6 76.5
(iv) separate in space & time 36.5 77.2

Table 9. Effect of separate space-time positional embedding.
Backbone: MVIiT-B, 16 x4. FLOPs are 70.3G for all variants.



Comparison to prior work

model pretrain | top-1 | top-5 | GFLOPs x views | Param
SlowFast 16x8 +NL [34] - 81.8 195.1 234x3x10] 59.9
model pre-train top-1 | top-5 | FLOPs x views | Param X3D-M - 78.8 194.5 6.2x3x10 3.8
Two-Stream 13D [11] - 71.6 [ 90.0 | 216 x NA| 25.0 X3D-XL - 8191955 48.4x3x10| 11.0
ip-CSN-152 [94] - 77.8 1928 109x3x10| 32.8 ViT-B-TimeSformer [8] [IN-21K 1703x3x1| 1214
SlowFast 8 x 8 +NL [29] - 78.7193.5| 116x3x10| 59.9 ViT-L-ViViT [1] IN-21K 3992x3x4| 310.8
SlowFast 16 x8 +NL [29] - 79.8 193.9 | 234x3x10| 59.9 MVIiT-B, 16 x4 - 82.1 195.7 70.5x1x5] 36.8
X3D-M [28] - 76.0192.3 6.2x3x%x10 3.8 MViT-B, 32x3 - 83.4196.3 170x1x5| 36.8
X3D-XL [28] - 79.1 1939 | 48.4x3x10| 11.0 MYViT-B-24, 32x3 - 84.1 | 96.5 236 x1x5| 52.9
ViT-B-VTN [76] ImageNet-1K | 75.6 [ 92.4 | 4218x1x1]| 114.0 Table 5. Comparison with previous work on Kinetics-600.
ViT-B-VTN [76] ImageNet-21K | 78.6 | 93.7 1 4218x1x1| 114.0 model pretrain | top-1|top-5|FLOPs x views | Param
ViT-B-TimeSformer [6] [ImageNet-21K | 80.7 | 94.7 | 2380x3x1| 121.4 TSM-RGB [76] IN-1K+K4001 63.3 | 882 62.4%x3%2| 429
ViT-L-ViViT [1] ImageNet-21K | 81.3 | 94.7 | 3992x3x4 307.04\ MSNet [68] IN-1K 64.7 | 89.4 67x1x1| 24.6
ViT-B (our baseline) ImageNet-21K | 79.3 | 93.9 180x1x5| 87.2 TEA [73] IN-1IK | 65.1 | 89.9 70x3x10 -
ViT-B (our baseline) - 68.5 | 86.9 180x1x5| 87.2 ViT-B-TimeSformer [&] IN-2IK | 62.5]| - 1703x3x1]| 121.4
12x fe ViT-B (our baseline) IN-2IK [ 63.5| 88.3 180x3x1| 87.2
FLO SlowFast R50, 8 x8 [34] 61.9 | 87.0 65.7x3x1| 34.1
SlowFast R101, 8 x 8 [34] 63.1 | 87.6 106 x3x1| 53.3
/ MViT-B, 16x4 K400 64.7 | 89.2 70.5x3x1| 36.6
MViT-B, 32x3 67.1 | 90.8 170x3x1| 36.6
Table 4. Comparison with previous work on Kinetics-400. MViT-B, 64 x3 67.7 | 90.9 455x3x1| 36.6
MViT-B, 16 x4 66.2 |1 90.2 70.5x3x1| 36.6
MViT-B, 32x3 K600 67.8 | 91.3 170x3x1| 36.6
MViT-B-24, 32 x3 68.7 | 91.5 236x3x1| 53.2

Table 6. Comparison with previous work on SSv2.



Applying the architecture to image classification

Multiscale idea is space/time agnostic

MVIiT on ImageNet: We simply remove
temporal dimension
Training deep MViT networks works out of

the box
o +2% over DeiT-B at lower FLOPs

o  +0.7% better than concurrent Swin-B at lower
FLOPs/Params

Multiscale Vision Transformers perform
state-of-the-art on ImageNet, even though it
was designed for video classification

ImageNet top-1 accuracy

model pretrain | Acc | FLOPs (G) | Param (M)
RegNetZ-4GF [27] 83.1 4.0 28.1
RegNetZ-16GF [27] 84.1 15.9 95.3
EfficientNet-B7 [99] 84.3 37.0 66.0
DeiT-S [101] 79.8 4.6 22.1
DeiT-B [101] 81.8 17.6 86.6
DeiT-B 1 3842 [101] 83.1| 55.5 87.0
Swin-B (concurrent) [79] 83.3 15.4 88.0
Swin-B 1 3842 (concurrent) [79] 842 47.0 88.0
MViT-B-16, max-pool 82.5 7.8 37.0
MYViT-B-16 83.0 7.8 37.0
MYViT-B-24 84.0 14.7 72.7
MViT-B-24-3202 84.8 32.7 72.9
MViT-L-48 1 3842 86.0( 140.7 218.5

github.com/facebookresearch/pytorchvideo

Code

github.com/facebookresearch/SlowFast



facebook Artificial Intelligence Research

1>2 PyTorchVideo

Conclusion

* Multiscale Vision Transformers connect multiscale feature hierarchies with
transformers

 MVIT hierarchically expands feature complexity while reducing visual resolution
* In empirical evaluation, it shows advantage over single-scale vision transformers

 MVIT achieves substantial gains with respect to concurrent transformers (ViT)
across major video benchmarks at a fraction of the inference compute

* Without using any external data: Other concurrent works report a failure to
train video transformer models without ImageNet pre-training

* For image recognition: MViT outperforms concurrent work on ImageNet and
even though it has been designed for video

github.com/facebookresearch/pytorchvideo
github.com/facebookresearch/SlowFast



L earning Individual Styles of Conversational Gesture

Shiry Ginosar* Amir Bar* Gefen Kohavi Caroline Chan Andrew Owens Jitendra Malik

CVPR 2019






Conversational gestures

Types of gestures:
lconic

Metaphoric
Beat

Delctic
Cohesive
Emblem

Characteristic of an individual speaker.



Kenaon's continuum

Spontaneous Language-like Pantomime Emblems Sign language
gesticulation gestures
e —————————————————
More speech, Less speech,
idiosyncratic gesture Socially-regulated signs

[Kendon, 2004]



Sign language
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Related work

Psychology

McNell 1994, Kendon 2004

Conversational agents
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Cassell et al. 1994, Morency 2007, Levine et al. 2010

Sound-to-video

&,

N N
Suwajanakorn 2017, Shlizerman 2017, Chung 2019



Task: predict gesture from speech




(Gestures dataset

10 subjects.

128 hours total.
Clean video intervals with frontal single speaker.

OpenPose detections for every frame.






How do gesture styles differ across speakers?




Predicting gestures

Pose

AudIO




Predicting gestures
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Predicting gesture

Audio Input



Predicting gesture

-

Audio Input



Synthesizing a video

Ground truth face

N

Audio Input Predicted gestures



Vlethod detalls

Audio
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L1 regression loss

Real or Fake
Motion Sequence?




GAN loss snaps to individual styles of motion
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GAN loss snaps to individual styles of motion
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Examples with ground truth footage



Ground -
truth

Predicted

L3

Face is ground truth.
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Face is synthesized from ground truth.



Ground ===

; . - ' Synthetic video
truth . | 3 i
= ), ‘ x =
¢ as - _— nm-s
b ——g . . ‘& »
-  / ¢
v gy
'\

'
Predicted ' F ) W i

*
+* . *
*

‘ s
" ,’.-ﬁ\
f ' s
I—
'ﬁg

Face is ground truth. Face Is synthesized from ground truth.
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truth
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Quantitative evaluation

575
S 46
D)
O
2 345
P
e
S 23
N
9
L 115
®
0 ;
< Random NN Median RNN*  ° Ours, GAN  Ours, no
GAN
Method

*[E. Shlizerman et al. Audio to body dynamics. 2018]



Prediction examples for other speakers
(with ground truth footage)



Mark Kubinec
(chemistry lecture)



Predicted from audio
Face is ground truth

Rate Laws
Zn(s)+ 2 H* &= Zn? (aq) + H2(9)
AZEL M, |1 AH

rate
At At At
Common Rate Laws:

Zn2* : *determined by experiment*
ST first order:

rate = k [x]
[H1]

time
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ChemQuiz: Highest Boiling Point
Dominant IM force: Hydrogen Bonding




Conan O'Brien



Predicted from audio
Face is ground truth

Ground truth
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i Predicted from audio
e Face is ground truth
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Predicted from audio
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(Gestures are person specific.

L1 loss

1.20

Meyers -

Oliver -

1.05
Stewart -

Ellen -

0.90

Input Speech

-0.75

Angelica

For every speaker audio input (row) we apply all other individually trained speaker models (columns).



But we can still try to transfer!

Vladlen-to-Kubinec
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http://people.eecs.berkeley.edu/~shiry/speech2gesture/

Open questions In social perception

Computers today have pitifully low “social intelligence”

We need to understand the internal state of humans as they interact
with each other and the external world

nis Includes emotional state, body language, current goals. We
currently are able to capture “surface manifestations”

Hierarchical understanding of human behavior is the holy grail.
Computer Vision can contribute to it and be aided by advances in it.
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