
Visual Navigation in Novel Environments

Robot with a first 

person camera

Dropped into a novel 

environment
Navigate around

“Go 
300 feet North, 
400 feet East”

Goal

“Go Find a 
Chair”



Classical Solution

Mapping

Planning

Observed Images

Geometric Reconstruction

Hartley and Zisserman. 2000. Multiple View 

Geometry in Computer Vision

Thrun, Burgard, Fox. 2005.  Probabilistic Robotics

Canny. 1988. The complexity of robot motion 

planning.

Kavraki et al. RA1996. Probabilistic roadmaps for 

path planning in high-dimensional configuration spaces. 

Lavalle and Kuffner. 2000. Rapidly-exploring 

random trees: Progress and prospects.

Video Credits: Mur-Artal et al., Palmieri et al.
Path Plan



Geometric 3D Reconstruction of the World

Do we need to tediously reconstruct everything on this table?

Video Credit: Mur-Artal and Tardos, TRobotics 2016. ORB-SLAM2: an Open-Source SLAM System 

for Monocular, Stereo and RGB-D Cameras.

Unnecessary



Geometric 3D Reconstruction of the World

Can’t speculate about space not directly observed.

Insufficient



Geometric 3D Reconstruction of the World

Can’t exploit patterns in layout of indoor spaces.

Insufficient



Geometric 3D Reconstruction of the World

Ignore navigational affordances.

Insufficient



Modern End-to-End Learned Navigation

Goal

Action to 

Execute

Mnih et al., Nature 2014. Human-level control through deep reinforcement learning.

Levine et al., JMLR 2015. End-to-End Training of Deep Visuomotor Policies.

Zhu et al., ICRA 2017. Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning.

Supervision through 

Reinforcement Learning 

or Imitation Learning



Tolman. Psychological Review 1948. Cognitive Maps in Rats and 

Men
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Navigating to Objects 
in the Real World
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Empirical Evaluation
3 Approaches

6 Unseen Homes
6 Goal Object Categories



Classical

  Geometric Map

  Heuristic Exploration

  No Training

End-to-end Learning

  End-to-end

  Large-scale IL + RL fine-tuning

  77,000 human trajectories

  200M frames of RL

Modular Learning

  Semantic Map

  Goal-Oriented Exploration

 10M frames of RL

Methods



End-to-end Learning

[Habitat-Web, Learning Embodied Object-Search Strategies from Human Demonstrations at Scale. Ramrakhya et al., CVPR 2022]

Depth

RGB

(𝑥, 𝑦, 𝜃)

Pose

Goal Category

Plant

GRU

Previous 
Action

Hidden 
State

ActionSemantics

Resnet50
(PointNav)

Resnet18

Resnet18

Segment



Sum 
Height

Goal-Oriented 
Semantic Policy

Planner

𝑋 𝑌 𝑍

Point Cloud

𝐶1 𝐶2 𝐶2

Semantic Scores

Project

Depth

RGB

(𝑥, 𝑦, 𝜃)

Pose

Goal Category

Plant

3D Semantic Map 2D Semantic Map with Semantic Goal

Semantics

Action
Segment

Modular Learning

[Object Goal Navigation Using Goal-Oriented Semantic Exploration. Chaplot et al., NeurIPS 2020]
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End-to-end 
Failures

Goal: Toilet Goal: Plant

Goal: TV
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Simulation
vs

Reality

End-to-end
Learning

Input

Modular
Learning

Input

Segmentation
Bed False Positive
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Segmentation Model 
Trained in Real World

mAP@0.5 = 0.50

Segmentation Model 
Trained in Simulation

Chair false 
negative

TV false 
negative

Chair false 
positive

Plant false 
negative

mAP@0.5 = 0.10

mAP@0.5 = 0.45
Toilet false negativeBed false positive

mAP@0.5 = 0.35



0.81

0.78

0.77

0.90

0.80

0.23

0.00 0.25 0.50 0.75 1.00

Sim Real World

Success Rate SPL

0.47

0.64

0.42

0.58

0.39

0.16

Modular Learning Sim vs Real

Classical

End-to-end Learning

Modular Learning



Takeaways
For practitioners: 
• Modular learning can reliably navigate to objects with 90% 

success

For researchers: 
• Models relying on RGB images are hard to transfer from sim 

to real         leverage modularity and abstraction in policies
• Disconnect between sim and real error modes         evaluate 

semantic navigation on real robots



GOAT: GO to Any Thing

Matthew Chang*, Theophile Gervet*, Mukul Khanna*, Sriram Yenamandra*, Dhruv Shah, Tiffany Min, Kavit Shah, 

Chris Paxton, Saurabh Gupta, Dhruv Batra, Roozbeh Mottaghi, Jitendra Malik*, Devendra Singh Chaplot*





GOAT Problem
GOAT System Architecture
Results
Applications
Pick & Place
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Platform Agnostic



Unknown Environment
Explore

Perception
Detect and Localize 

Objects

Lifelong Memory
Remember Object 

Locations

Control
Navigate to / Pick & Place 

Objects
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Multimodal: 
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Lifelong: 
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Category
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Go to a SINK

3
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GOAT: GO to Any Thing

Semantic Map (𝑚𝑡)

Sensor Pose 
Reading (𝑥𝑡)

Observation (𝑠𝑡)
(RGB-D)
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Instance 
Segmentation

Depth 
Estimation

Geometric
Projection

Dynamic
Instance 
Mapping



Local 
Policy

Global
Policy

Long-term goal (𝑔𝑡)

Action (𝑎𝑡)

Category Goal
CHAIR
BOOK
CUP

Language Goal
Brown office chair 

Bed with white sheets
Cup on the kitchen counter

𝜋𝐿𝜋𝐺

GOAT: GO to Any Thing

Semantic Map (𝑚𝑡)

chair - 3

couch - 1

Object Instance Memory (𝑜𝑡)
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Dynamic
Instance 
Mapping



Local 
Policy

Global
Policy

Long-term goal (𝑔𝑡)

Action (𝑎𝑡)

Category Goal
CHAIR
BOOK
CUP

Language Goal
Brown office chair 

Bed with white sheets
Cup on the kitchen counter

𝜋𝐿𝜋𝐺

GOAT: GO to Any Thing

Semantic Map (𝑚𝑡)

chair - 3

couch - 1

Object Instance Memory (𝑜𝑡)

Sensor Pose 
Reading (𝑥𝑡)

Observation (𝑠𝑡)
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Architecture
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Instance
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Dynamic 
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Reading (𝑥𝑡)

Perception System

Semantic Map (𝑚𝑡)

bed - 1
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cup - 2



Local 
Policy

Global
Policy

Long-term goal (𝑔𝑡)

Action (𝑎𝑡)

Category Goal
CHAIR
BOOK
CUP

Language Goal
Brown office chair 

Bed with white sheets
Cup on the kitchen counter

𝜋𝐿𝜋𝐺

GOAT: GO to Any Thing

Sensor Pose 
Reading (𝑥𝑡)

Observation (𝑠𝑡)
(RGB-D)

Image Goal
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Architecture
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Depth 
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Projection
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Instance 
Mapping

Semantic Map (𝑚𝑡)

chair - 3

couch - 1

Object Instance Memory (𝑜𝑡)



Semantic Map

toilet - 1

couch - 1

chair - 3cup - 1cup - 2

cup - 3

book - 2

GOAT Memory Representation
Semantic map with associated Object Instance memory



Object Instance Memory Goals

chair - 3

Goal 
Localization

Goal 
Localization

Goal 
Localization

Explore

Not localizedLocalizedLocalized

book - 2

toilet - 1

couch - 1

chair - 3

Semantic Map

couch - 1



GOAT: GO to Any Thing

Sensor Pose 
Reading (𝑥𝑡)
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“In the Wild” 
Empirical Evaluation

9 Unseen Homes
4 Methods

10 Trajectories per Home
5-10 Goals per Trajectory

~90h of Experiments



“In the Wild” 
Empirical Evaluation
200+ Object Instances











Results
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Pick & Place



Observation Third-person view

Semantic Map

Goal

Robot plans around the dynamic obstacle (person) to go to the refrigerator

Social Navigation



Observation Third-person view

Semantic Map

Goal

Robot removes previous location of person from the map

Social Navigation



Observation Third-person view

Semantic Map

Goal

Robot follows the person while updating their location

Social Navigation



Platform Agnostic



Summary
Universal navigation

Multimodal Image

Find the fruit 

basket on the 

kitchen 

counter

Language

Bring me 

a CUP

Category



Summary
Universal navigation

Multimodal
Lifelong
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Summary
Universal navigation

Multimodal
Lifelong
Unseen environments



Summary
Universal navigation

Multimodal
Lifelong
Unseen environments

Applications
Pick & Place



Summary
Universal navigation

Multimodal
Lifelong
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Summary
Universal navigation

Multimodal
Lifelong
Unseen environments

Applications
Pick & Place
Social Navigation
Platform Agnostic



Thank you!

Webpage: https://theophilegervet.github.io/projects/goat

https://theophilegervet.github.io/projects/goat


Thank you!



Learning to Walk for Quadrupeds

Jitendra Malik
UC Berkeley



Rocky area next to river bed

Recovery from leg obstruction



Stairs on a hiking path



Loose Mud Pile at Construction Site

Unstable and constantly deforming ground



Vegetation on uneven surface





bounce on carpet

Bouncing (Gallop) Gait @ 1.5 m/s



Navigation in Cluttered Indoor Setting



Coupling Vision and Proprioception for 
Navigation of Legged Robots

1Zipeng Fu*, 2Ashish Kumar*, 1Ananye Agarwal, 2Haozhi Qi, 
2Jitendra Malik, 1Deepak Pathak

1CMU      2UC Berkeley
CVPR 2022
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Navigation in Cluttered Indoor Setting



1.  Navigation should be coordinated with locomotion

2.  Vision should be coordinated with proprioception

Whats Missing?



Navigation coordinated with locomotion
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Only Vision Vision + Proprioception

Vision coordinated with proprioception



Velocity

Command

Generator

(10Hz)

Visual Planner

Safety Advisor (10 Hz)

𝑎𝑡

Occupancy Map Cost Map

𝑥𝑡−20, 𝑎𝑡−21

𝑥𝑡−1, 𝑎𝑡−2

.

.

.

Speed 

Constraints

Fall Predictor

Base

Policy

(100 Hz)

𝑥𝑡−1, 𝑎𝑡−2

Adaptation

Module (75 Hz)

Walking Policy

𝜔
̂

𝑡
𝑦𝑎𝑤

, 𝑣
̂

𝑡

Depth (30Hz)

 Tracking (200 Hz)

5Hz 10Hz

Local Occupancy 
Map

Collision Detector

FMM Distance + Obstacle SDF

Coupled Navigation and Locomotion



Comparison of

Vision + Proprioception Only Vision



Vision + Proprioception

Only Vision



Vision + Proprioception

Only Vision



More Deployment Videos
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Navigation in Cluttered Indoor Setting

Invisible Obstacle Detected



Navigation in the Wild



Simulation 

Comparisons

invisible obstacles

rough, slip, payload randomization



Real world comparisons



Legged Locomotion in Challenging 

Terrains using Egocentric Vision

Ananye Agarwal*        Ashish Kumar*         Jitendra Malik†         Deepak Pathak†

CMU                      UC Berkeley                  UC Berkeley                    CMU



Lee, Joonho, et al. "Learning quadrupedal 
locomotion over challenging terrain." Science 
robotics 5.47 (2020)

Siekmann, Jonah, et al. "Blind bipedal stair 
traversal via sim-to-real reinforcement 
learning." RSS (2021)

Robots can walk on challenging terrain 

Kumar, Ashish, et al. 
"Rma: Rapid motor 
adaptation for legged 
robots." RSS (2021).

Siekmann, Jonah, et al. "Blind 
bipedal stair traversal via sim-to-
real reinforcement 
learning." RSS (2021)

Lee, Joonho, et al. "Learning 
quadrupedal locomotion over 
challenging terrain." Science 
robotics 5.47 (2020)

These robots are blind!



Why do we need vision?





Typical approach: build terrain maps from vision

Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., & 

Hutter, M. (2022). Learning robust perceptive locomotion for 

quadrupedal robots in the wild. Science Robotics

Kim, Donghyun, et al. "Vision aided dynamic exploration of 

unstructured terrain with a small-scale quadruped 

robot." ICRA 2020.



Real world maps accumulate noise

Miki, Takahiro, et al. "Learning robust perceptive locomotion 

for quadrupedal robots in the wild." Science Robotics (2022)



Do we really need terrain maps?

We directly go from vision to control





𝜋1
MLP 𝑎𝑡

Phase 1: Learning to Walk with Privileged 

Terrain Information

𝑜𝑡

Scandots (    )𝑚𝑡

𝑚𝑡
RNN 𝛾𝑡

RNN𝑒𝑡 𝑧𝑡

• Simulation: IsaacGym

• Trained with PPO with smoothness+task rewards

• ~10 Billion Samples simulated in 3 days on a single GPU 



Training Terrains 



Phase 1 Policy



How do we deploy it?

Scandots (    )𝑚𝑡

𝜋1𝑚𝑡
RNN

RNN

MLP

𝑒𝑡

𝑜𝑡

𝛾𝑡

𝑧𝑡

scan dots

[friction, 

payload…..]



Phase 2: Learning to Walk with Egocentric Depth

Scandots (    )𝑚𝑡

𝑎𝑡
𝑜𝑡

𝛾𝑡
̂

𝑧𝑡
̂

Egocentric Depth

RNN𝑑𝑡 𝜋1
MLP

Copy and 

Freeze
Regress

𝜋1𝑚𝑡
RNN

RNN

MLP

𝑒𝑡

𝑜𝑡

𝛾𝑡

𝑧𝑡

scan dots

[friction, 

payload…..]

RNN𝑜𝑡



Deployment Policy

RNN

RNN

𝑜𝑡

𝛾𝑡
̂

𝑧𝑡
̂

Egocentric Depth

𝑑𝑡 𝜋1
MLP

𝑜𝑡



Emergent footstep planning



Challenges Due to Size

Gait heuristics fail on a small robot

Size Comparison



Emergent Hip Abduction



Map Free, Gait Free



Blind Noisy Ours

Slopes 34.72 36.14 43.98

Stepping Stones 1.02 1.09 18.83

Stairs 16.64 6.74 31.24

Discrete Obstacles 32.41 29.08 40.13

Average Distance

Performance is better without maps



Limitations

Front Camera Failure (unable to see a dip) Implicit planning failure



Thank You
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