

Robot with a first person camera

Dropped into a novel environment

"Go 300 feet North, 400 feet East"

"Go Find a Chair"

Navigate around

Observed Images Planning

Hartley and Zisserman. 2000. Multiple View Geometry in Computer Vision Thrun, Burgard, Fox. 2005. Probabilistic Robotics

Canny. 1988. The complexity of robot motion planning.

Kavraki et al. RA1996. Probabilistic roadmaps for path planning in high-dimensional configuration spaces.
Lavalle and Kuffner. 2000. Rapidly-exploring random trees: Progress and prospects.

Video Credits: Mur-Artal et al., Palmieri et al.

Geometric Reconstruction

Unnecessary

Video Credit: Mur-Artal and Tardos, TRobotics 2016. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras.

Do we need to tediously reconstruct everything on this table?

Insufficient

Can't speculate about space not directly observed.

Insufficient

Can't exploit patterns in layout of indoor spaces.

Insufficient

Ignore navigational affordances.

Modern End-to-End Learned Navigation

Mnih et al., Nature 2014. Human-level control through deep reinforcement learning. Levine et al., JMLR 2015. End-to-End Training of Deep Visuomotor Policies. Zhu et al., ICRA 2017. Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning.

COGNITIVE MAPS IN RATS AND MEN¹

BY EDWARD C. TOLMAN

University of California

Fm. 15

(From E. C. Tolman, B. F. Ritchie and D. Kalish, Studies in spatial learning. I. Orientation and the short-cut. J. exp. Psychol., 1946, 36, p. 16.)

Tolman. Psychological Review 1948. Cognitive Maps in Rats and Men

F10. 16

(From E. C. Tolman, B. F. Ritchie and D. Kalish, Studies in spatial learning. I. Orientation and short-cut. J. exp. Psychol., 1946, 36,

(From E. C. Tolman, B. F. Ritchie and D. Kalish, Studies in spatial learning. I. Orientation and the short-cut. J. exp. Psychol., 1946, 36, p. 19.)

Navigating to Objects in the Real World

Theophile Gervet ¹

Soumith Chintala⁴

Dhruv Batra ^{3,4}

Jitendra Malik^{2,4}

Devendra Chaplot⁴

Observation

Goal: plant Predicted Semantic Map

- 2: potted plant

Third-person view

Observation

Goal: chair Predicted Semantic Map

- Navigable Area 0: chair
 - 1: couch
 - 2: potted plant

Third-person view

Methods

- Large-scale IL + RL fine-tuning 77,000 human trajectories 200M frames of RL

Habitat

Al2-Thor

Sim

Modular Learning

Classical

End-to-end Learning

0.00

0.25

Results

Success Rate

Real World

0.50

SPL

Goal: couch

SPL: 0.33, 181 steps

Modular Learning is Reliable **Success Rate** SPL Real World ■ Sim 0.81 0.47 0.90 0.64 0.42 0.78 0.80 0.58 0.77 0.39 0.23 0.16 0.50 0.00 0.25 0.75 1.00

Observation

Goal: toilet Predicted Semantic Map

Third-person view

Classical vs Modular Learning Goal: bed

SPL: 0.90, 98 steps

Semantic Exploration

SPL: 0.52, 152 steps

End-to-end fails to Transfer

Failures

Modular vs End-to-end Transfer

Success Rate

Real World

SPL

Simulation vs Reality

Modular Learning Sim vs Real

Success Rate

Real World

SPL

Takeaways

For practitioners:

SUCCESS

For researchers:

- Models relying on RGB images are hard to transfer from sim to real *leverage modularity and abstraction in policies* Disconnect between sim and real error modes evaluate semantic navigation on real robots

Modular learning can reliably navigate to objects with 90%

Matthew Chang*, Theophile Gervet*, Mukul Khanna*, Sriram Yenamandra*, Dhruv Shah, Tiffany Min, Kavit Shah, Chris Paxton, Saurabh Gupta, Dhruv Batra, Roozbeh Mottaghi, Jitendra Malik*, Devendra Singh Chaplot*

Third-person view

1. GOAT Problem **GOAT System Architecture** Results Applications Pick & Place Social Navigation Platform Agnostic

Unknown Environment Explore

Perception Detect and Localize Objects

Lifelong Memory Remember Object Locations

Control Navigate to / Pick & Place Objects

Multimodal:

Reach Any Object Specified in Any Way

Lifelong: Remember Object Locations

1. GOAT Problem **GOAT System Architecture** Results Applications Pick & Place Social Navigation Platform Agnostic

GOAT: GO to Any Thing
Bed with white sheets

System

Bed with white sheets

Perception System

System

Bed with white sheets

GOAT Memory Representation

Semantic map with associated Object Instance memory

Object Instance Memory

Goals

System

Bed with white sheets

1. GOAT Problem **GOAT System Architecture** Results Applications Pick & Place Social Navigation Platform Agnostic

"In the Wild" Empirical Evaluation 9 Unseen Homes 4 Methods 10 Trajectories per Home 5-10 Goals per Trajectory ~90h of Experiments

The bed with the white blanket pulled back halfway and grey sheets.

on the blanket.

The bunk bed with stars The bed with blue and white sheets.

The with the blue and and plant on the right.

The bed with the blue The bed with grey sheets The bed with the white The large grey living room The green couch. yellow painting above it blanket and blue pillows. and light green trim. blanket and red pillows couch with many pillows.

The green cup on the kitchen counter

The red cup on the kitchen counter

The green mug on the plastic chair.

The grey cup on the nightstand.

The red cup on top of the glass table.

the kitchen counter.

The red cup on

The light blue cup.

a wooden seat.

The grey dining table chair.

The beige teddy bear.

The kitchen sink.

The green lawn chair. The black office chair.

The black leather chairs in the kitchen.

at the kitchen island.

me bar-neight ch

The stuffed lion toy.

black and white counter.

The kitchen sink.

The bathroom sink with green counter.

The bathroom sink.

The bathroom sink

The kitchen sink.

"In the Wild"

Empirical Evaluation 200+ Object Instances

The plant in front of

the window.

wood desk.

to the stairs.

in the bedroom.

The potted plant next The large potted plant The group of plants in front of the curtain.

The large potted plant The large potted plant The small potted plant next to the foosball table.

The white rectangular The large grey living room The light brown couch The large grey couch in The couch covered in front of the yellow wall.

in front of the mirror. on the hallway table

on the coffee table.

The television.

the kitchen counter

The refrigerator.

The refrigerator.

The television mounted The television mounted

on a yellow wall. on a white wall.

The refrigerator.

The toilet next to the shower curtain with blue fish.

The oven.

The oven.

living room coffee table. the kitchen counter.

The refrigerator.

The oven.

a white blanket.

has a car on the cover

The toilet next to the glass shower door.

The oven.

Observation

Observation

Semantic Map

Results

Success Rate

SPL

Performance Across Episode

Baselines

Observation

Success: 6/6 SPL: 0.78

Success: 4/6 SPL: 0.40

Instance Map

CoW

Observation

Success: 1/6 SPL: 0.16

Baselines

Observation

Observation

Success: 4/6 SPL: 0.40

Success: 6/6 SPL: 0.78

Instance Map

CoW

Success: 1/6 SPL: 0.16

Baselines

Ours Success

Observation

Instance Map

Observation

Success: 6/6 SPL: 0.78

Instance Map

Success: 1/6 SPL: 0.16

Success: 4/6 SPL: 0.40

Baselines

Observation

Success: 6/6 SPL: 0.78

Success: 4/6 SPL: 0.40

Instance Map

Observation

Success: 1/6 SPL: 0.16

1. GOAT Problem **GOAT System Architecture** Results Applications Pick & Place Social Navigation Platform Agnostic

Pick & Place

Social Navigation Third-person view

Observation

Robot plans around the dynamic obstacle (person) to go to the refrigerator

Social Navigation Third-person view

Observation

Robot removes previous location of person from the map

Social Navigation Third-person view

Observation

Semantic Map

Robot follows the person while updating their location

Platform Agnostic Third-person view

Universal navigationMultimodal

Summary

Universal navigation Multimodal

Lifelong

Universal navigation

- Multimodal
- Lifelong
- Unseen environments

Universal navigation

- Multimodal
- Lifelong
- Unseen environments

ApplicationsPick & Place

Observation

Semantic Map

<figure>

Universal navigation

- Multimodal
- Lifelong
- Unseen environments
- Applications
- Pick & Place
- Social Navigation

Observation

Universal navigation

- Multimodal
- Lifelong
- Unseen environments
- Applications
- Pick & Place
- Social Navigation
- Platform Agnostic

Observation

Semantic Map

<section-header><image>

Thank you!

Webpage: https://theophilegervet.github.io/projects/goat

Thank you!

Learning to Walk for Quadrupeds

Jitendra Malik UC Berkeley

Rocky area next to river bed

Recovery from leg obstruction

Unstable and constantly deforming ground

Loose Mud Pile at Construction Site

Bouncing (Gallop) Gait @ 1.5 m/s

bounce on carpet

Coupling Vision and Proprioception for Navigation of Legged Robots

¹Zipeng Fu*, ²Ashish Kumar*, ¹Ananye Agarwal, ²Haozhi Qi, ²Jitendra Malik, ¹Deepak Pathak

> ¹CMU ²UC Berkeley CVPR 2022

Linear and Angular Velocity

Velocity-Conditioned Policy

Visual Path Planner

- 1. Navigation should be coordinated with locomotion
- 2. Vision should be coordinated with proprioception

Whats Missing?

Navigation coordinated with locomotion

Vision coordinated with proprioception

Vision + Proprioception

Coupled Navigation and Locomotion

Comparison of

Vision + Proprioception

Only Vision

Vision + Proprioception

Only Vision

Vision + Proprioception

Only Vision

More Deployment Videos

Navigation in Cluttered Indoor Setting

Command Speed using Only Vision
Actual Speed using Proprioception
Actual Speed Using Proprioception

Simulation Comparisons

Navigation System	Terrain Type	Success	SPL	Tim
w/o Proprio	Flat	95.20	0.79	80
w/o Proprio	2x Inv-Obstacle	68.45	0.57	119
Ours	2x Inv-Obstacle	74.15	0.61	111
w/o Proprio	4x Inv-Obstacle	45.85	0.38	152
Ours	4x Inv-Obstacle	59.20	0.49	134
w/o Proprio	8x Inv-Obstacle	24.35	0.20	184
Ours	8x Inv-Obstacle	39.25	0.32	164
in	vicible obst			

invisi	b	е	0	OS	tac	les

Navigation System	Terrain Type	Success	SPL	Time
w/o Proprio	Flat	95.20	0.79	80.2
w/o Proprio	Randomized	80.25	0.66	105.
Ours	Randomized	87.40	0.73	117.

rough, slip, payload randomization

Detour with Planks		Success Rate	# Obstacles Hit			Success Rate	Tim
	Vision + Proprio	100%	0.2		Vision + Proprio	100%	
	Vision	80%	0.2	Unexpected Human Obstacle	Vision	0%	
Cluttered		0				Succose	
Narrow		Rate	# Obstacles Hit			Rate	
Path							
	Vision + Proprio	80%	0.6	-15.65	Vision + Proprio	100%	
	Vision	60%	0.6	Rough Slippery Terrain	Vision	80%	

Real world comparisons

Legged Locomotion in Challenging Terrains using Egocentric Vision

Ananye Agarwal* CMU

Ashish Kumar* UC Berkeley

Jitendra Malik[†] UC Berkeley

Deepak Pathak[†] CMU

Robots can walk on challenging terrain These robots are blind!

Kumar, Ashish, et al. "Rma: Rapid motor adaptation for legged robots." RSS (2021).

Siekmann, Jonah, et al. "Blind bipedal stair traversal via sim-toreal reinforcement learning." RSS (2021)

Lee, Joonho, et al. "Learning quadrupedal locomotion over challenging terrain." Science robotics 5.47 (2020)

Why do we need vision?

Perception enables precise locomotion

Typical approach: build terrain maps from vision

Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., & Hutter, M. (2022). Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics

Kim, Donghyun, et al. "Vision aided dynamic exploration of unstructured terrain with a small-scale quadruped robot." ICRA 2020.

Real world maps accumulate noise

B Reflective ground

C Deep snow

D Overhanging objects

et al. "Learning robust perceptive locomotion dadrupedal robots in the wild." Science Robotics (2022)

E Non rigid obstacles

F Pose estimation drift

Do we really need terrain maps?

We directly go from vision to control

Phase 1: Learning to Walk with Privileged Terrain Information

- Simulation: IsaacGym
- Trained with PPO with smoothness+task rewards
- ~10 Billion Samples simulated in 3 days on a single GPU

Training Terrains

Rough Flat

Gaps

Stepping Stones

Discrete Obstacles

Phase 1 Policy

How do we deploy it?

Phase 2: Learning to Walk with Egocentric Depth

Deployment Policy

Egocentric Depth d_t d_t RNN $\hat{\gamma}_t$ ∂_t RNN $\hat{\gamma}_t$

Stepping Stones (~20 cm apart)

Gait heuristics fail on a small robot

Size Comparison

Challenges Due to Size

Emergent Hip Abduction

Map Free, Gait Free

Performance is better without maps Average Distance

Noisy	Ours
36.14	43.98
1.09	18.83
6.74	31.24
29.08	40.13

Limitations

Front Camera Failure (unable to see a dip) Implicit planning failure

