Camera Calibration

How we go from the pinhole model
to real cameras imaging points in the
3D world

Important practical problem for which software can be found in
OpenCV , Matlab, and many other places.



The Pinhole Camera
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But how do we “preserve” this image?



Joseph Nicéphore Niépce
View from the Window at Le Gras, c. 1826



Louis Daguerre

Le Boulevard du Temple, Paris 1833



Eadweard Muybridge
The Horse in Motion, 1878



Digital Cameras

The Charge Coupled Device was invented in 1969, based on exploiting the fact
that silicon atoms can release electrons when hit by photons. Nowadays CMQOS
imagers are more common. The key difference is in how the charge generated is
converted to a voItage (when digitized this becomes the pixel brightness value)
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Camera Calibration

(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )
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Camera Calibration

(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )
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Camera Calibration

(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )
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Intrinsic Parameters

(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )

[c_r f'_r] — Optical center (the principal point), in pixels.

(fe, ,f_;-) — Focal length in pixels.

f‘_ Ly Gy f.\x = Flpx
) ! yv= F -"’P_\'
0 f C. F — Focal length in world units, typically expressed in millimeters.
JY ) (;3_1, p_,,.) — Size of the pixel in world units.
() () l s — Skew coefficient, which is non-zero if the image axes are not perpendicular.
= = s = fytan a

The pixel skew is defined as:

Skew
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Non-linear Lens Distortion

(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )

Pincushion distortion No distortion Barrel distortion

Positive radial displacement Negative radial displacement
The radial distortion coefficients model this type of distortion. The distorted points are denoted as (Xjitorted Vdistorted)
‘rdiS[DI‘[E:d = ,‘f(‘l + k]*rz + .{:2*?‘4 + k3*r6)

Vdistorted ™ }’{1 +k 1*-"' 2 + kg*."‘ 4 + k3*r6)
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Three types of transformations

* Rotation
* Translation
* Perspective projection

We like to use the tools of linear algebra, matrix-vector
multiplication. But can we do that? Are these
transformations linear?



Three types of transformations

* Rotation
* Translation
* Perspective projection

Homogeneous coordinates to the rescue!



Let us review projective
transformations




Rigid body motions
(Euclidean transformations / isometries)

* Theorem: Any rigid body motion can be
expressed as an orthogonal transformation
followed by a translation.

Y(a) = Aa+t
A L Gm @%}\o\ijix



Affine transformations

* Definition: An affine transformation is a
nonsingular linear transformation followed
by a translation.

Y(a) = Aa+t



Some examples of affine transforms...




Projective Transformations

* Under perspective projection, parallel lines
can map to lines that intersect. Therefore, this
cannot be modeled by an affine transform!

* Projective transformations are a more general
family which includes affine transforms and
perspective projections.

* Projective transformations are linear
transformations using homogeneous
coordinates



Homogeneous coordinates

* |nstead of using n coordinates for n-
dimensional space, we use n+1 coordinates.

X) ' e brojeckive Lire

U fe P A R U S portek=0)
O\ G PT e pregdive plare
&%’ | | %r;&eu I md:, ok 00 f
W:q fee \93 Ou~d S0 ON

e




[xﬂ | N
Xz )\Xl N jﬁ 9,
KA >\:‘va
— J ) — - | P,h_.]
sk un
Tepresent  Se onN{nEl dagresodf {retom)

T hink 04 /UF\L/) oo ouﬂ)\m.ﬂ\fm%

&
Nty X %0 Xy, may el M e O



Picking a canonical representative
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The projective line

* Any finite point x can be represented as
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* Any infinite point can be expressed as
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The projective plane

* Any finite point can be represented as
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Y
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* Any infinite point can be represented as
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Lines in homogeneous coordinates
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Incidence of points on lines _
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Incidence of points on lines
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Incidence of points on lines
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Line incident on two points
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Representing affine transformations
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Perspective Projection
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Projective transformations
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