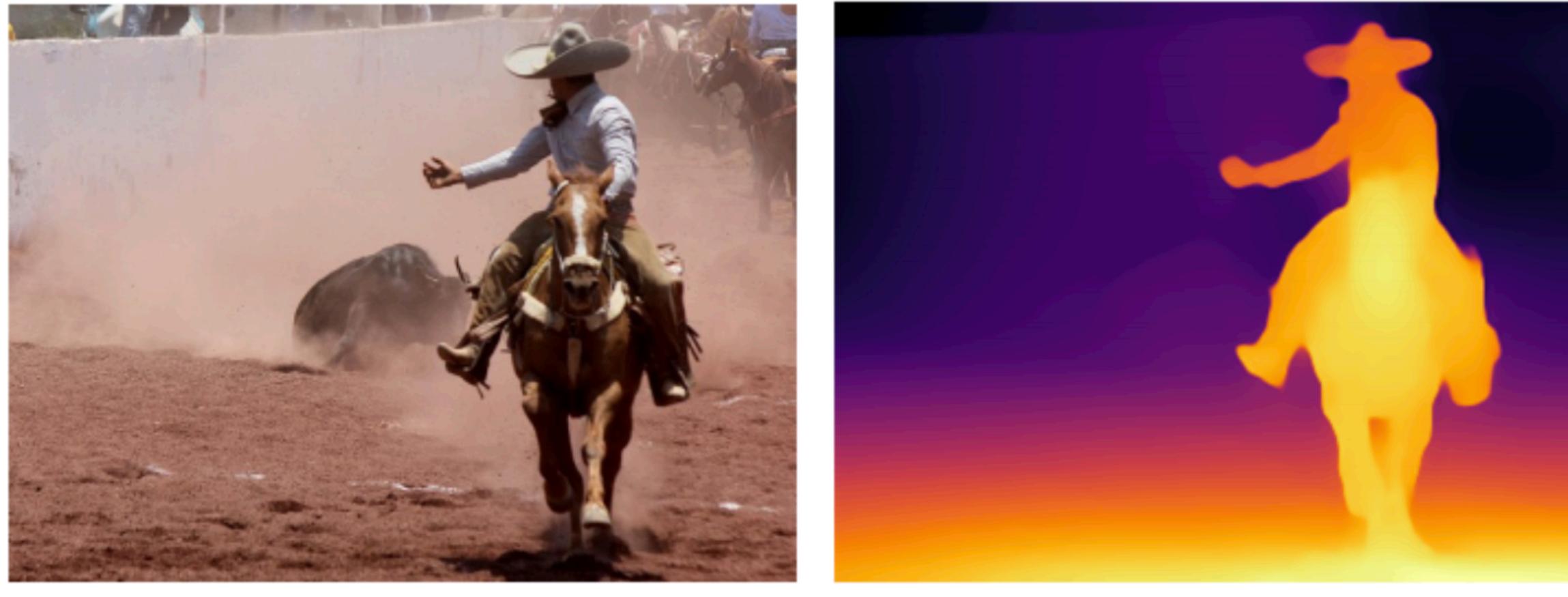
Predicting 2.5D/3D

With many useful slides from Shubham Tulsiani

CS 280 2025 Angjoo Kanazawa

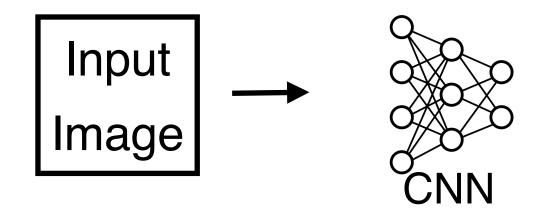
Monocular Depth Estimation



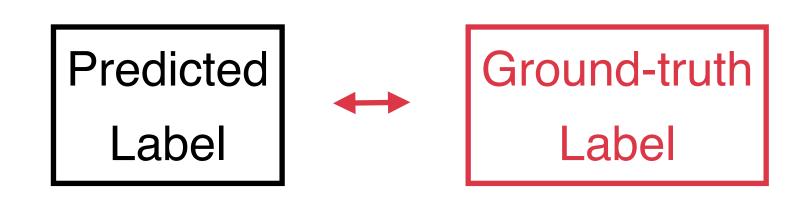
Depth from a Single Image

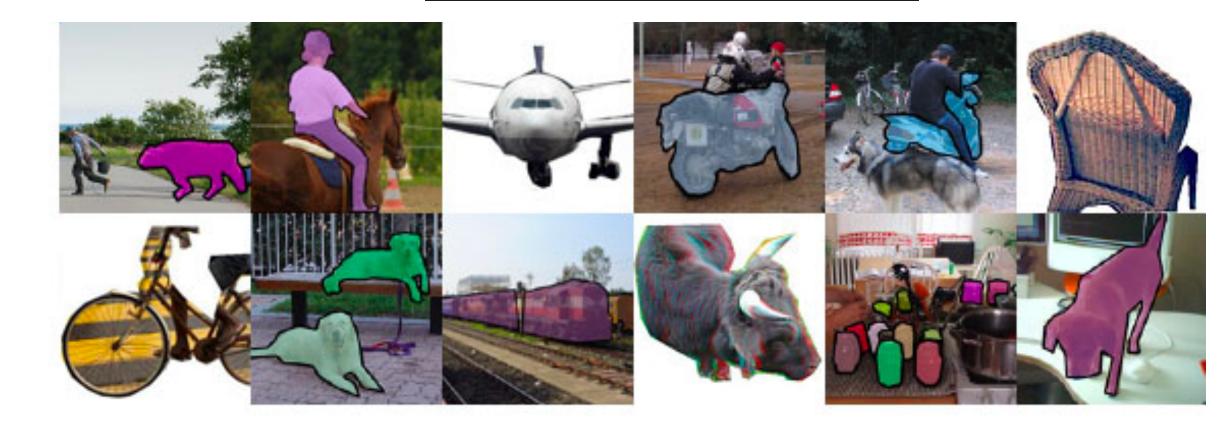
Image credits: Paul Bourke

Learning from Direct Supervision

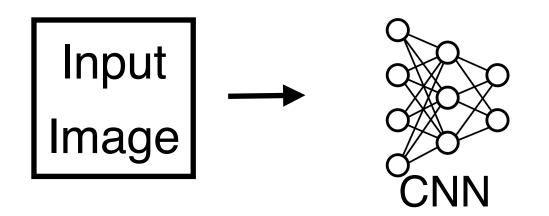


IM GENET



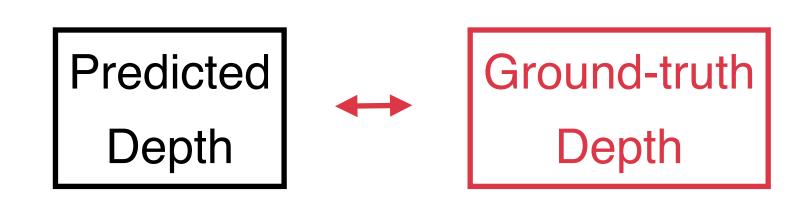


Learning from Direct Supervision



A caricature recipe for learning:

- Step 0: Decide on model and objectives
- Step 2: Learn a predictor
 - curves
- Use the predictor!

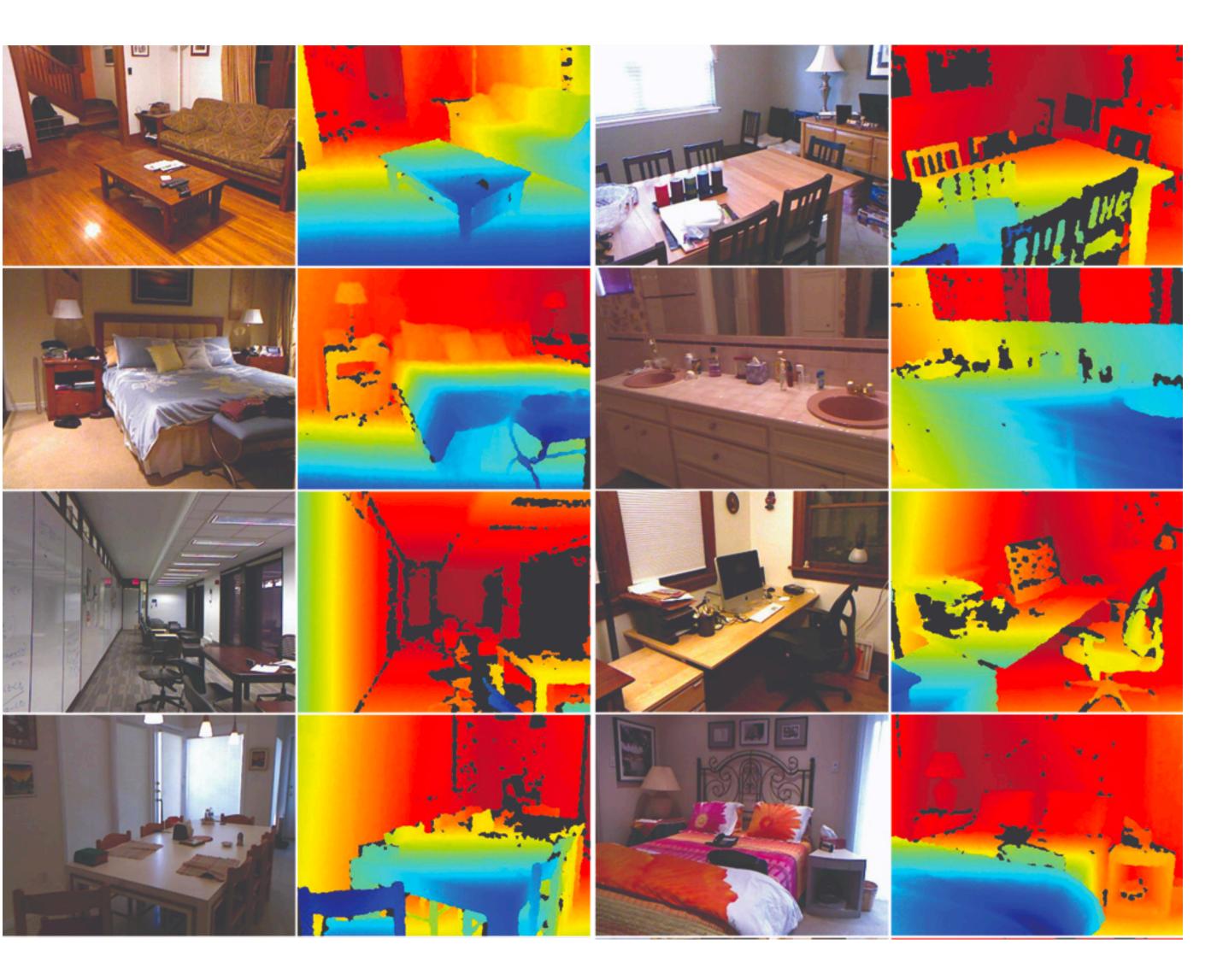


• Step 1: Collect training data (lots of [image, depth] pairs)

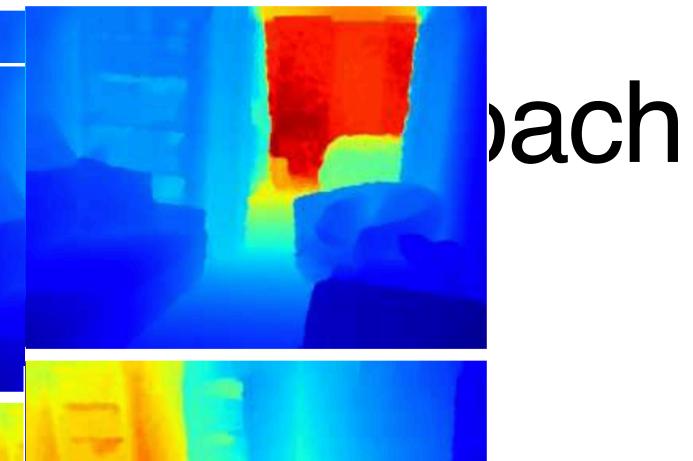
• Step 2a: Wait a few days, drink coffee and watch training

Capturing Depth

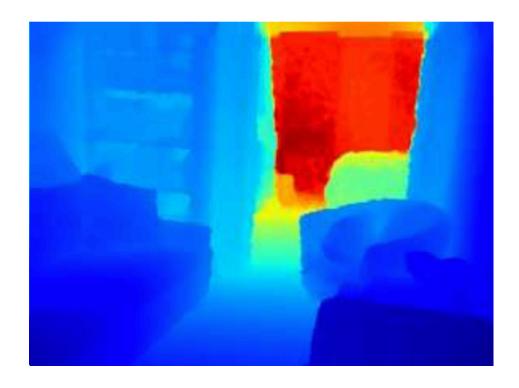
NYU Dataset. Silberman et. al.



 $D(y, y^*) = \frac{1}{2n^2} \sum_{i,j} \left((\log y_i - \log y_j) - (\log y_i^* - \log y_j^*) \right)^2$ $= \frac{1}{n} \sum_{i=1}^{i,j} d_i^2 - \frac{1}{n^2} \sum_{i,j=1}^{i,j} d_i d_j = \frac{1}{n} \sum_{i=1}^{i} d_i^2 - \frac{1}{n^2} \left(\sum_{i=1}^{i} d_i \right)^2$ $D(y, y^{*}) = \frac{1}{2n^{2}} \sum_{i,j} ((1 - \frac{1}{n}) \sum_{i,j} d_{i}^{2} - \frac{1}{n} \sum_{i,j$ P Convolu Netwo



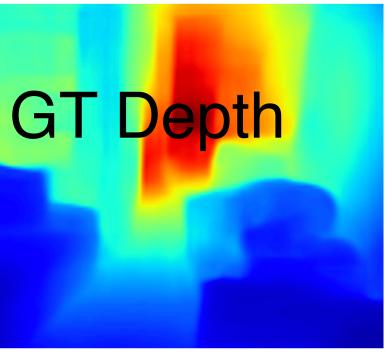
$$\left(\log y_{i} - \log y_{j}\right) - \left(\log y_{i}^{*} - \log y_{j}^{*}\right)\right)^{2} - \frac{1}{n^{2}} \sum_{i,j} d_{i} d_{j} = \frac{1}{n} \sum_{i} d_{i}^{2} - \frac{1}{n^{2}} \left(\sum_{i} d_{i}\right)^{2}$$



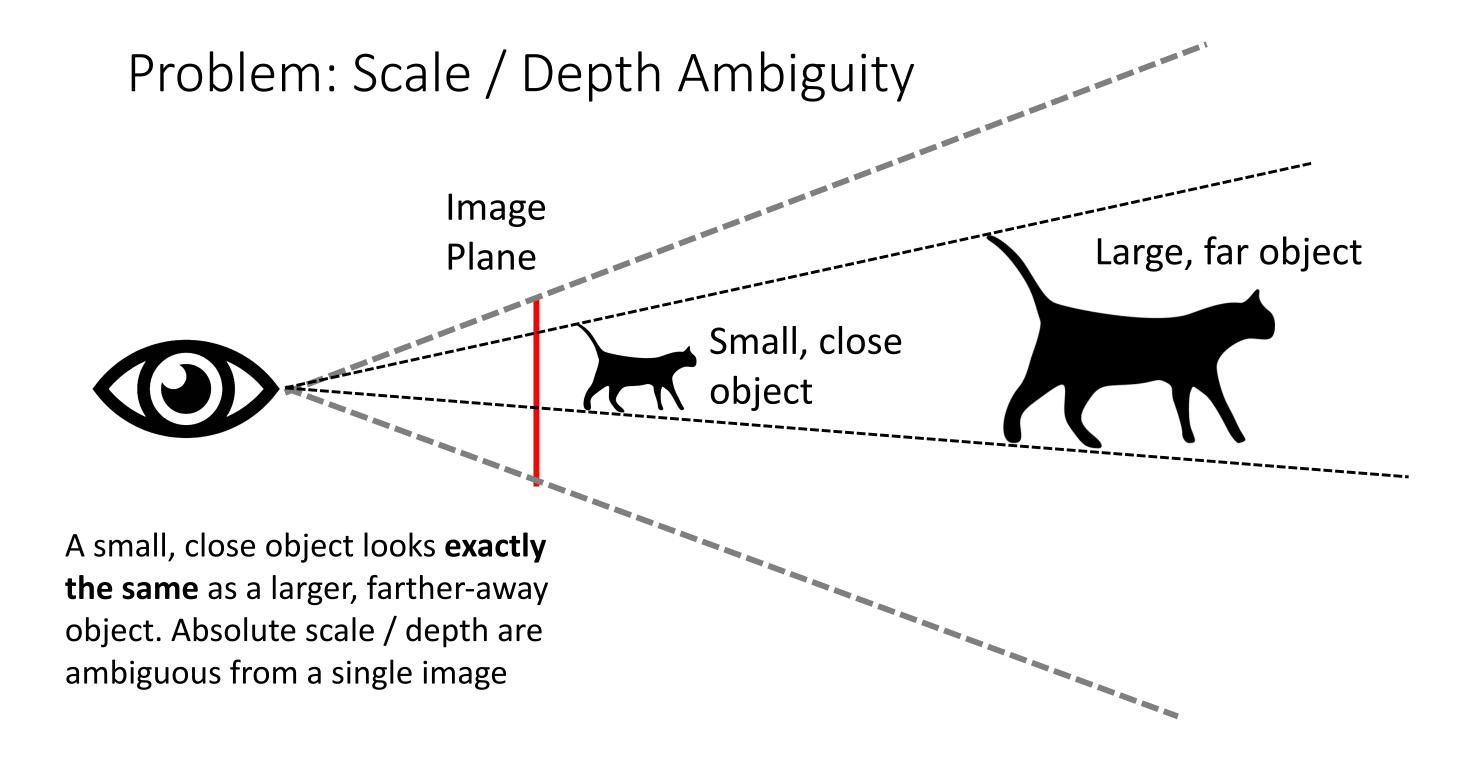
icted Depth

$$||y_i - y_i^*||^2$$

Slide credit: Justin Johnson



Depth Prediction



L(y, y)

Need a scale-*invariant* learning objective:

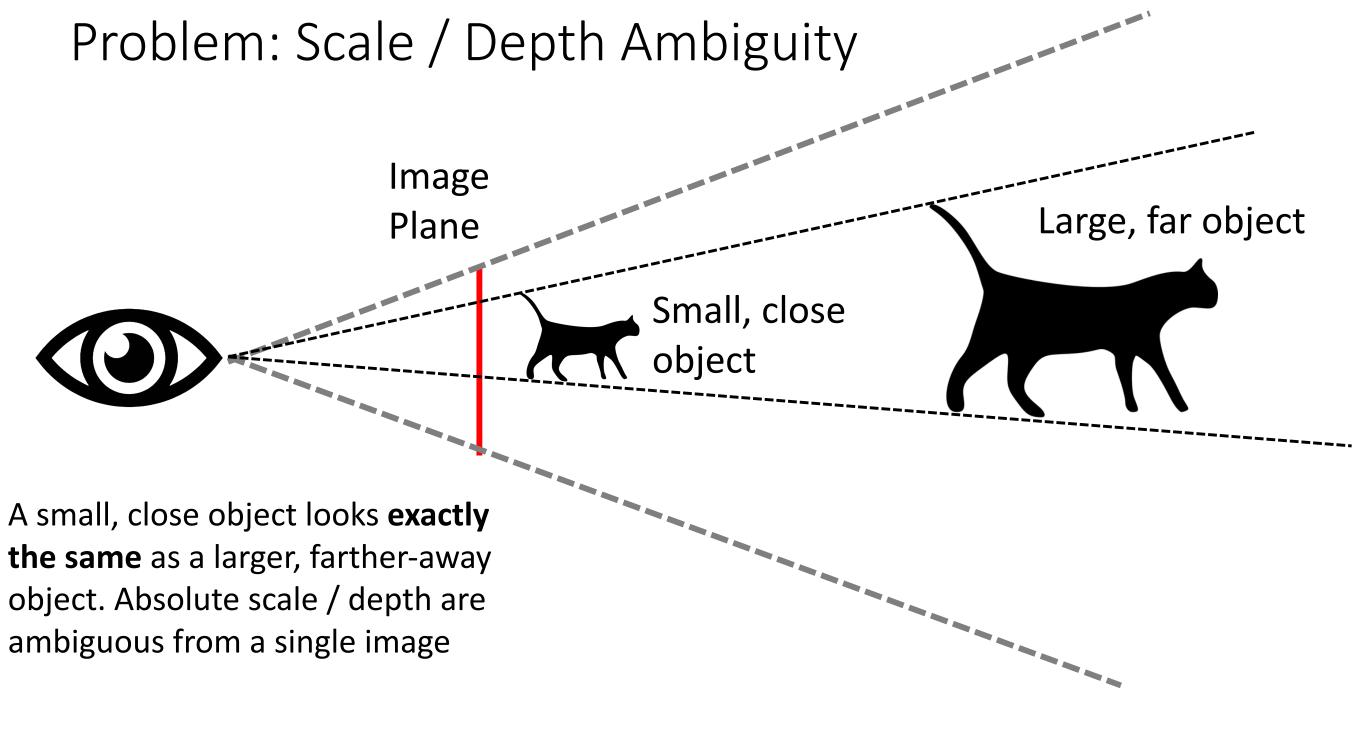
$$L(y, y^*) = L(\alpha y, y^*)$$

(for any scalar)

$$= \sum_{i} ||y_i - y_i^*||^2$$

Image credit: Justin Johnson

Depth Prediction



we for the the most

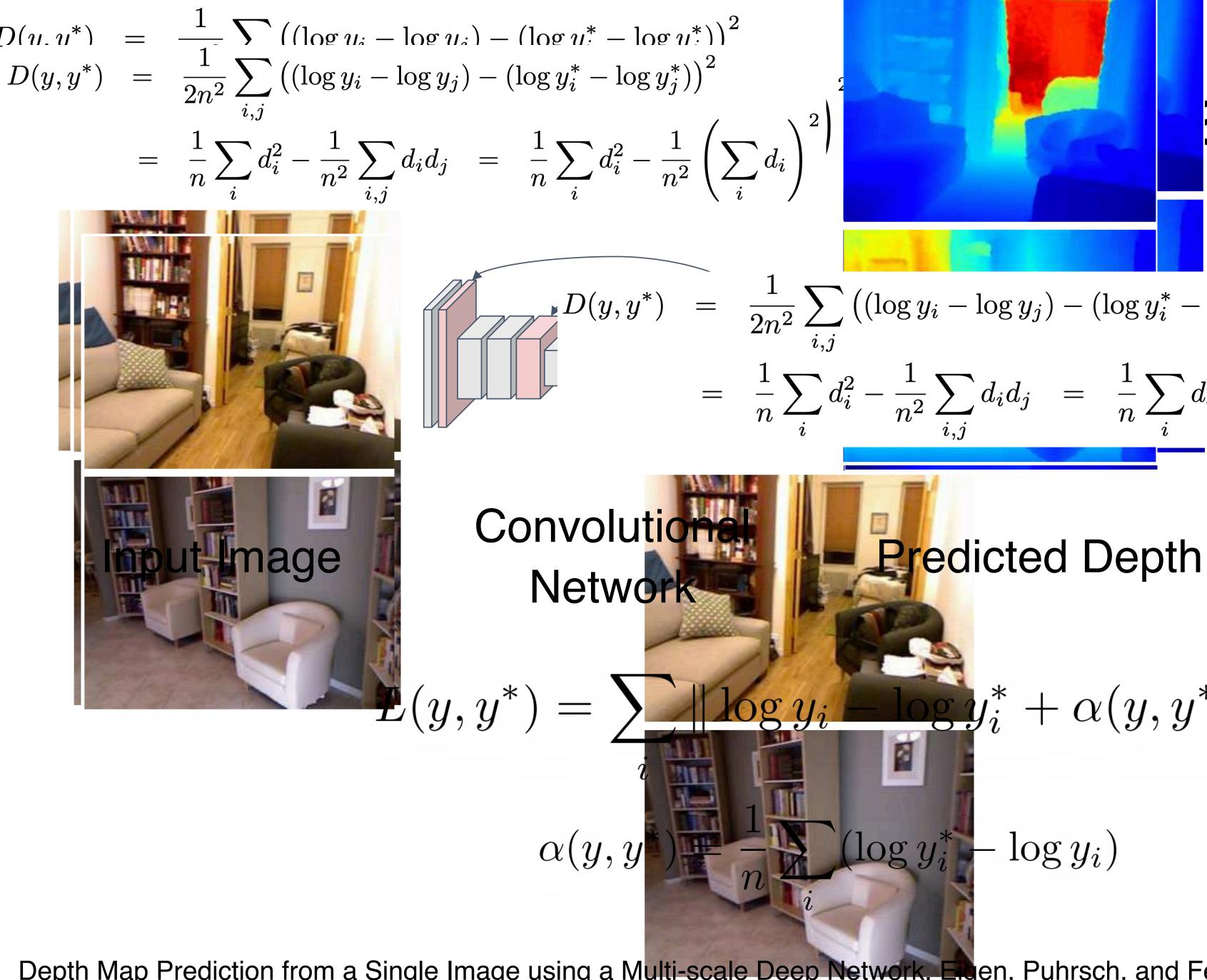
Use a scale-*invariant* learning objective:

$$L(y, y^*) = L(\alpha y, y^*)$$

(for any scalar)

$$\dot{h}_{\alpha}L(\alpha y, y^{*})$$

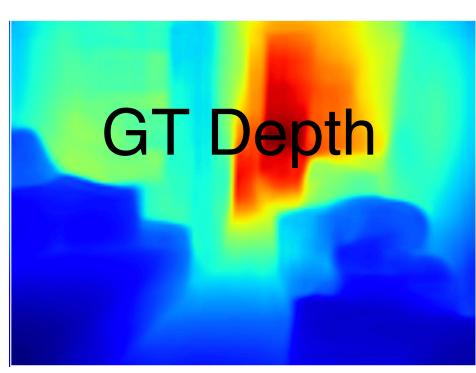
Solve for the alpha that minimizes the loss the most, and minimize that the loss



Depth Map Prediction from a Single Image using a Multi-scale Deep Network. Eigen, Puhrsch, and Fergus. NeurIPS 2014

ariant loss

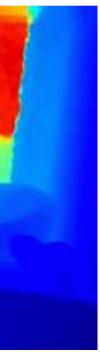
$$\frac{1}{\log y_i - \log y_j} - \left(\log y_i^* - \log y_j^*\right)^2 + \frac{1}{n^2} \sum_{i,j} d_i d_j = \frac{1}{n} \sum_i d_i^2 - \frac{1}{n^2} \left(\sum_i d_i\right)^2$$

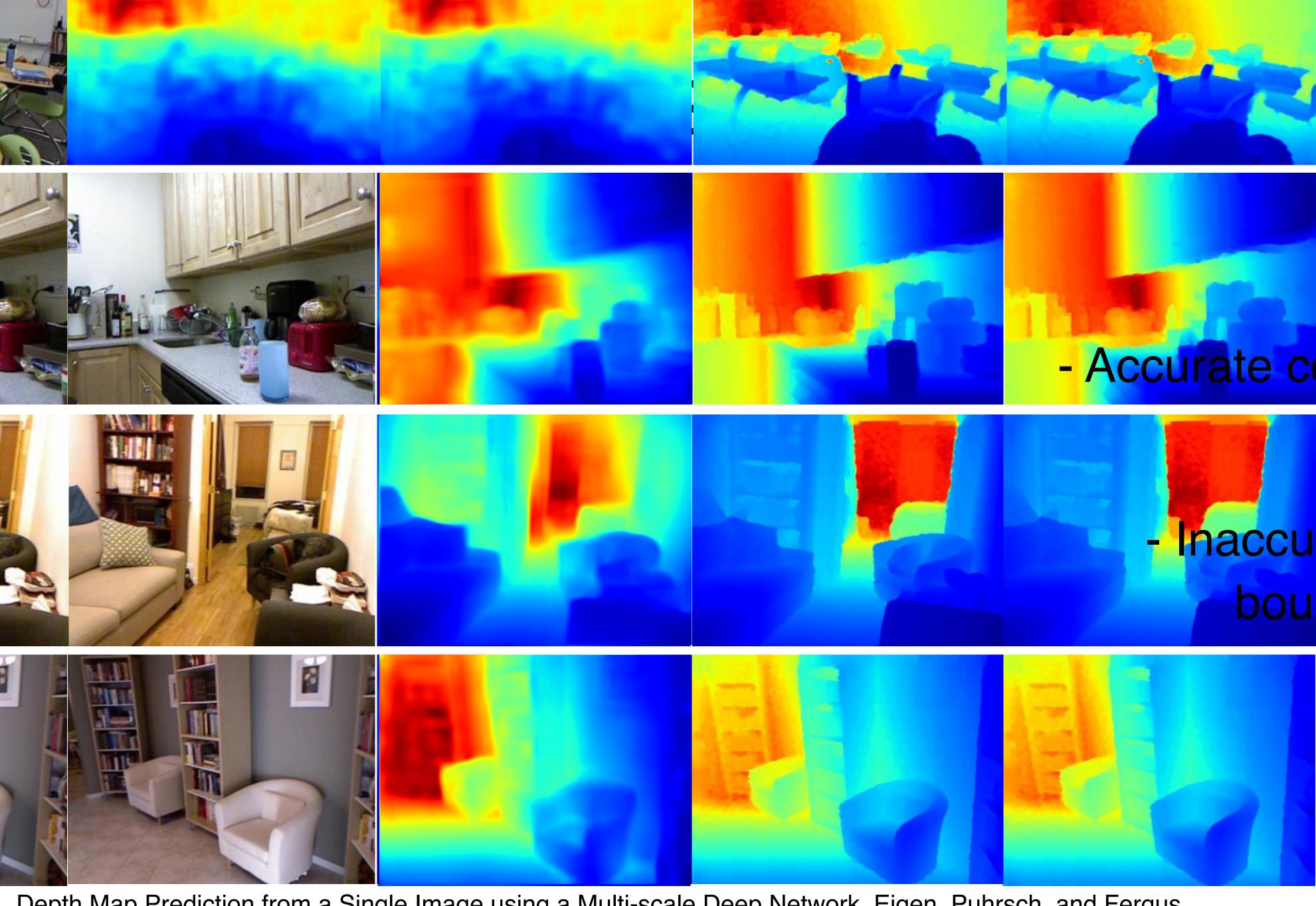


$$^{*} + \alpha(y, y^{*}) \|^{2}$$

Solution to $\alpha y - y^*$ in log-space

Slide credit: Justin Johnson

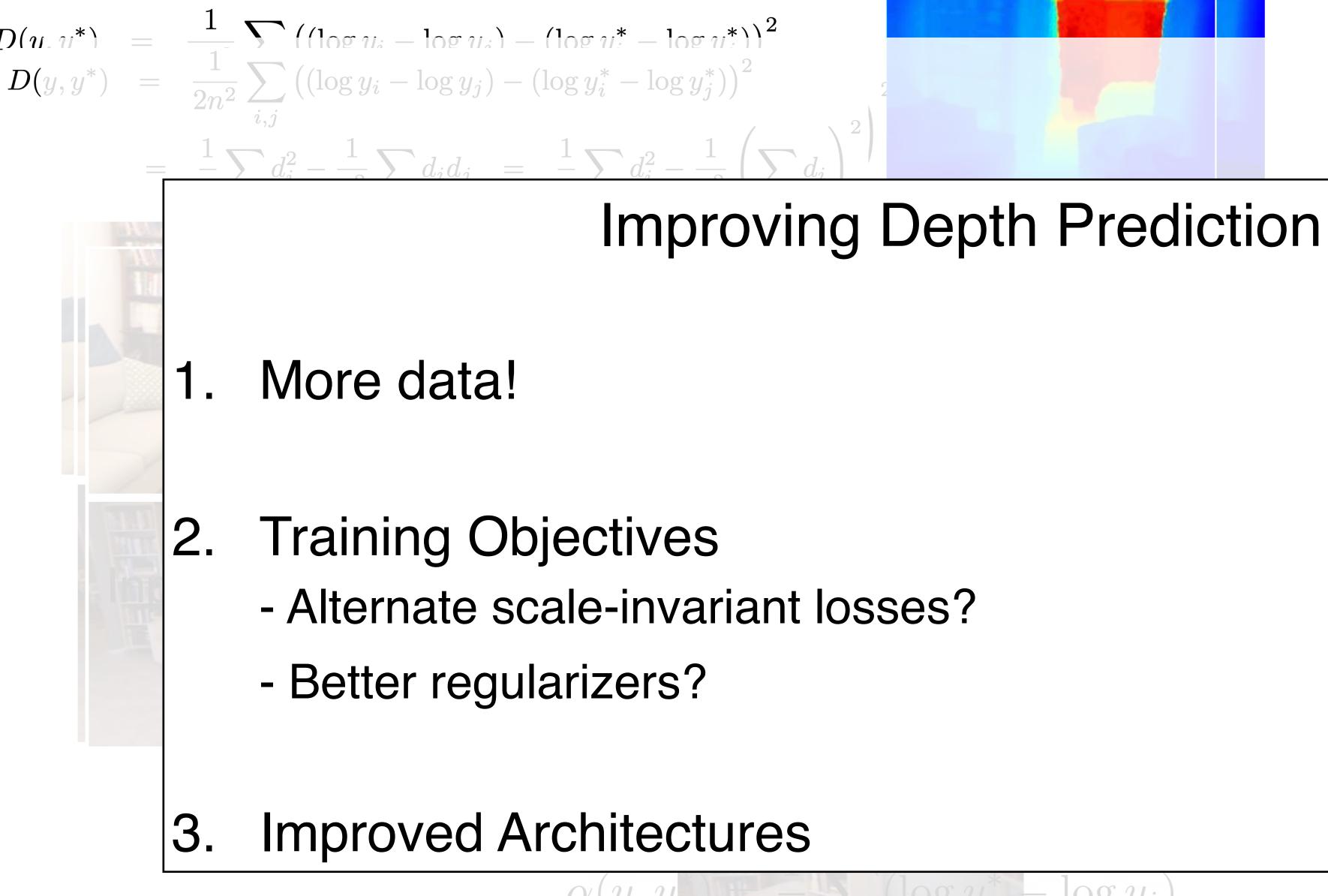


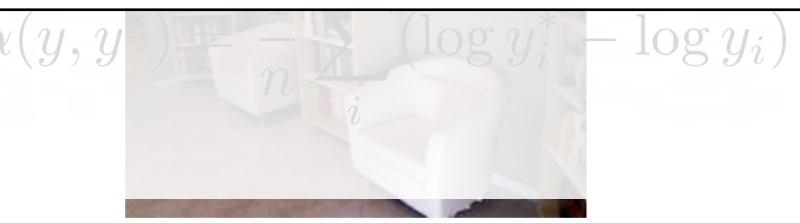


Depth Map Prediction from a Single Image using a Multi-scale Deep Network. Eigen, Puhrsch, and Fergus. NeurIPS 2014

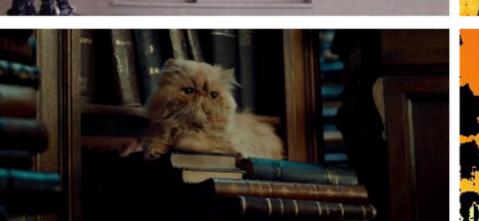
- Accurate coarse estimates

Inaccurrate around boundaries





3D movies dataset



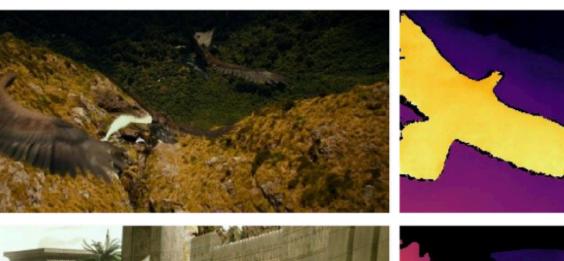
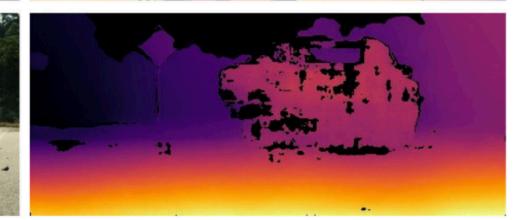


Fig. 2. Sample images from the 3D movies dataset. We show images from some of the films in the training set together with their inverse depth maps. Sky regions and invalid pixels are masked out. Each image is taken from a different film. 3D movies provide a massive source of diverse data.



Depth Datasets

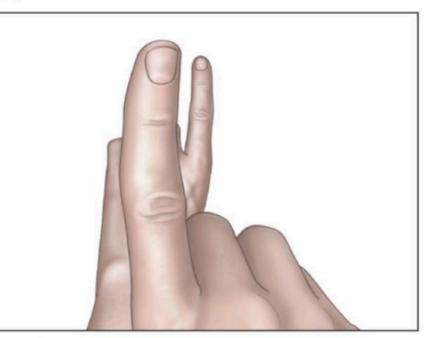
Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer

René Ranftl*, Katrin Lasinger*, David Hafner, Konrad Schindler, and Vladlen Koltun

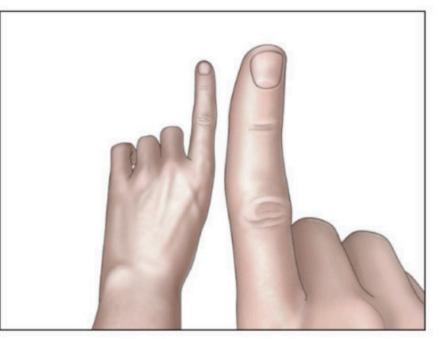
Dataset	Indoor	Outdoor	Dynamic	Video	Dense	Accuracy	Diversity	Annotation	Depth	# Images
DIML Indoor [31] 🗸			√	\checkmark	Medium	Medium	RGB-D	Metric	220K
MegaDepth [11]		\checkmark	(🗸)		(🗸)	Medium	Medium	SfM	No scale	130K
ReDWeb [32]	\checkmark	\checkmark	\checkmark		\checkmark	Medium	High	Stereo	No scale & shift	3600
WSVD [33]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Medium	High	Stereo	No scale & shift	1.5M
3D Movies	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Medium	High	Stereo	No scale & shift	75K
DIW [34]	\checkmark	\checkmark	\checkmark			Low	High	User clicks	Ordinal pair	496K
ETH3D [35]	\checkmark	\checkmark			\checkmark	High	Low	Laser	Metric	454
Sintel [36]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	High	Medium	Synthetic	(Metric)	1064
KITTI [28], [29]		\checkmark	(🗸)	\checkmark	(🗸)	Medium	Low	Laser/Stereo	Metric	93K
NYUDv2 [30]	\checkmark		()	\checkmark	1	Medium	Low	RGB-D	Metric	407K
TUM-RGBD [37]	\checkmark		(•	\checkmark	\checkmark	Medium	Low	RGB-D	Metric	80K

Disparity Recall...

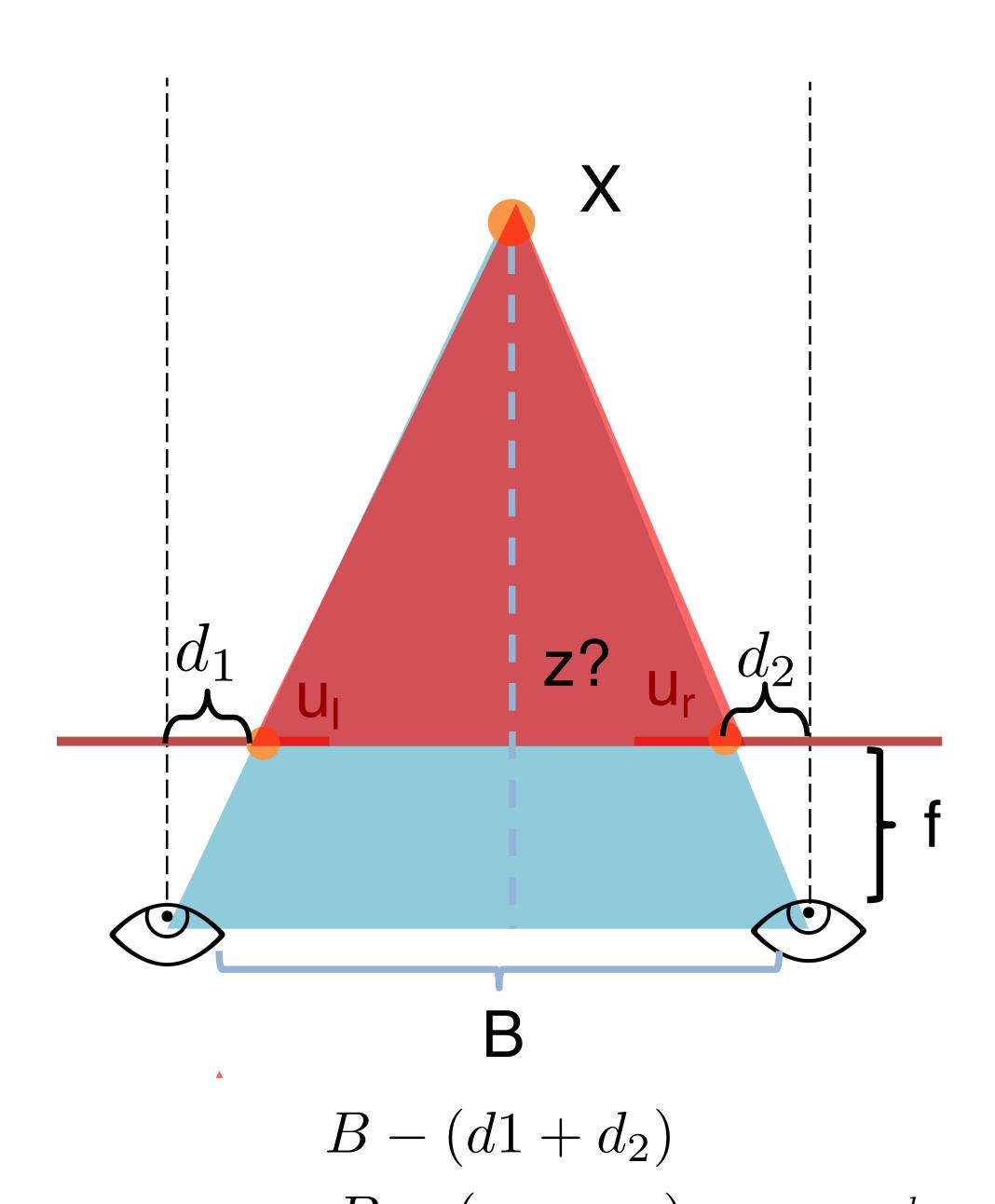
(b)



Right retinal image



Left retinal image



7

Depth from Disparity

Web Stereo Video Supervision for Depth Prediction from Dynamic Scenes. Wang et. al.

disparity = $u_{\text{left}} - u_{\text{right}}$

Lots of disparity = Near by Small disparity = Far away At infinity 0 movement $disparity = \frac{fb}{depth} \sim \frac{1}{depth}$

Why is disparity a nice space to predict?? - Easy to bound [0, 1] with d_{max}

- Linear in inverse depth

Scale and shift ambiguity still exists

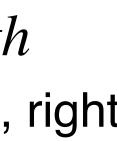
- Scale: Focal length and baselines are unknown!
- Shift: Values depend on d_{max} , which is image dependent
 - Principle points can also vary

So also trained with scale & shift invariant loss!

 $disparity = \frac{fb}{depth} \sim \frac{1}{depth}$

disparity
$$-(c_R - c_L) = \frac{fb}{dept}$$

c^{R,} c^L: principal point in left, right



Scale and Shift-invariant Depth Prediction

René Ranftl*, Katrin Lasinger*, David Hafner, Konrad Schindler, and Vladlen Koltun

$$(s,t) = \arg\min_{s,t} \sum_{i=1}^{M} (s\mathbf{d}_i + t - \mathbf{d}_i^*)^2$$
$$\hat{\mathbf{d}} = s\mathbf{d} + t, \quad \hat{\mathbf{d}}^* = \mathbf{d}^*,$$

- Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer
- Trained jointly across many datasets
- Scale and shift-invariant loss on disparity (inverse-depth):

$$\mathcal{L}_{ssi}(\hat{\mathbf{d}}, \hat{\mathbf{d}}^*) = \frac{1}{2M} \sum_{i=1}^{M} \rho\left(\hat{\mathbf{d}}_i - \hat{\mathbf{d}}_i^*\right)$$

Also use additional regularizers (e.g. gradients should match)

What this means You still need to solve for scale and shift at test time!

- At test time you have to scale and shift it to get depth:
- Scale (a) : global stretch factor, for focal length * baseline
- Shift (b) : one global offset where to places the center of disparity
- Finicky...

 $\hat{z} = rac{1}{a \cdot \hat{d}_{ ext{pred}} + b}$

Depth Prediction: Sample Results

Predictions of inverse depth (upto a scale and shift)

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer. Ranftl et. al.

Depth Prediction: Sample Results

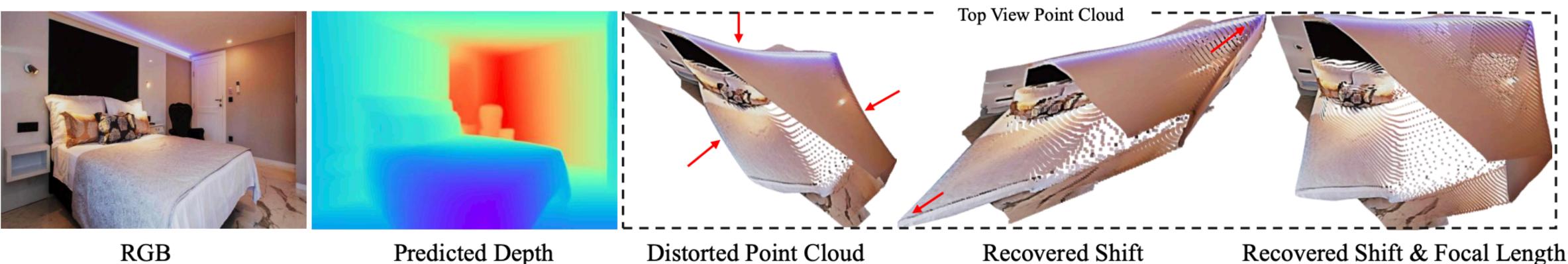
Depth Prediction: Sample Results

Don't judge a depth by its color — see prediction in 3D!

Sensitive to scale and shift

Learning to Recover 3D Scene Shape from a Single Image

[†] The University of Adelaide, Australia



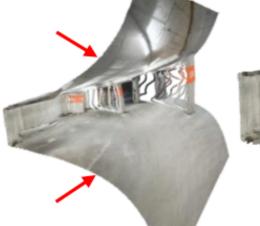
RGB

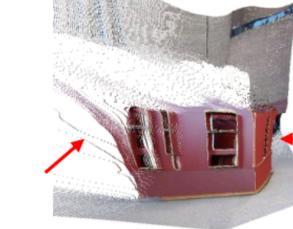
Predicted Depth

Figure 1: 3D scene structure distortion of projected point clouds. While the predicted depth map is correct, the 3D scene shape of the point cloud suffers from noticeable distortions due to an unknown depth shift and focal length (third column). Our method recovers these parameters using 3D point cloud networks. With recovered depth shift, the walls and bed edges become straight, but the overall scene is stretched (fourth column). Finally, with recovered focal length, an accurate 3D scene can be reconstructed (fifth column).

- **CVPR 2021**
- Wei Yin[†], Jianming Zhang[‡], Oliver Wang[‡], Simon Niklaus[‡], Long Mai[‡], Simon Chen[‡], Chunhua Shen^{†*}
 - [‡] Adobe Research

Same disparity output! Very different depth





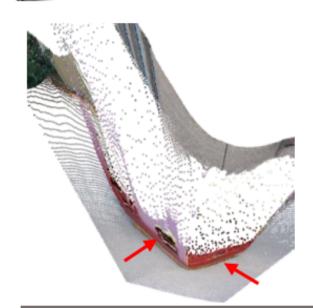
Left View

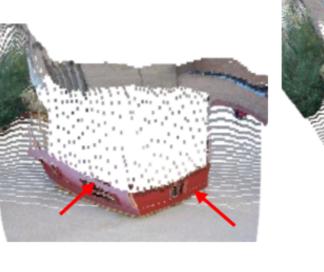
RGB

14

MiDaS

Ours-Baseline





Top View

MiDaS

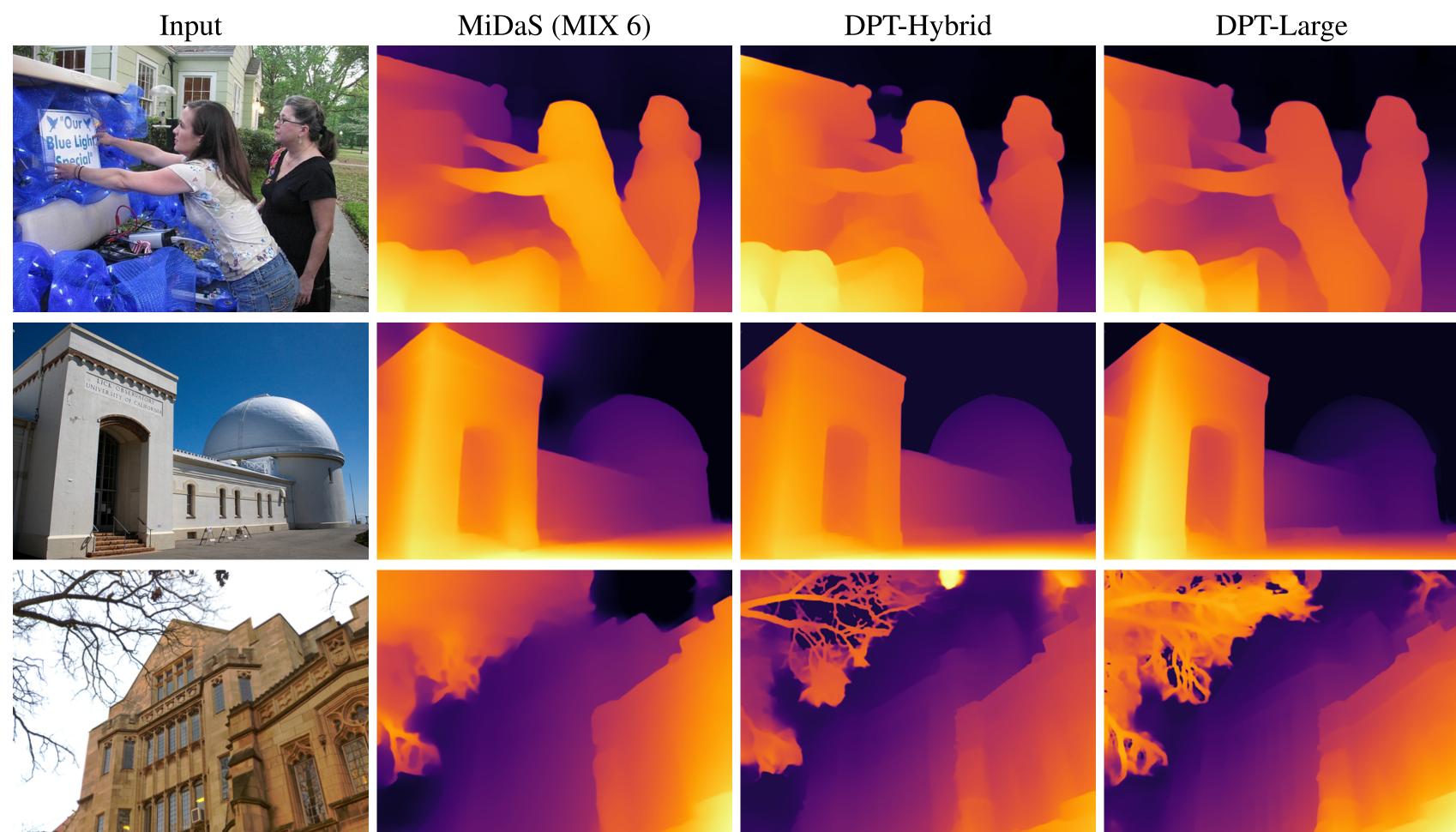
Ours-Baseline

Ours

Vision Transformers for Dense Prediction

René Ranftl

Alexey Bochkovskiy



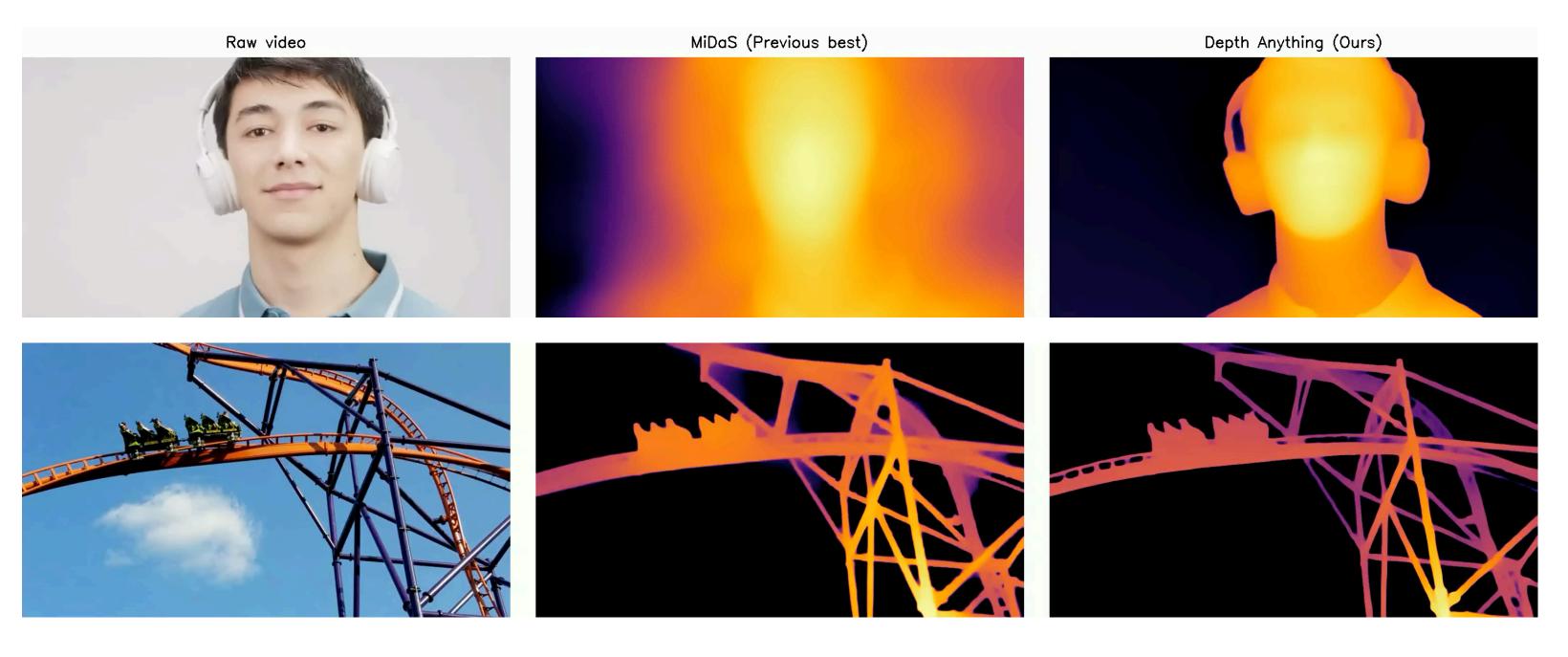
Vladlen Koltun

DPT, arXiv 2020 Using Transformers instead of convolutional predictors

Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data

Lihe Yang¹ Bingyi Kang^{2†} Zilong Huang² Xiaogang Xu^{3,4} Jiashi Feng² Hengshuang Zhao^{1†} ¹The University of Hong Kong ²TikTok ³Zhejiang Lab ⁴Zhejiang University † corresponding authors

https://depth-anything.github.io

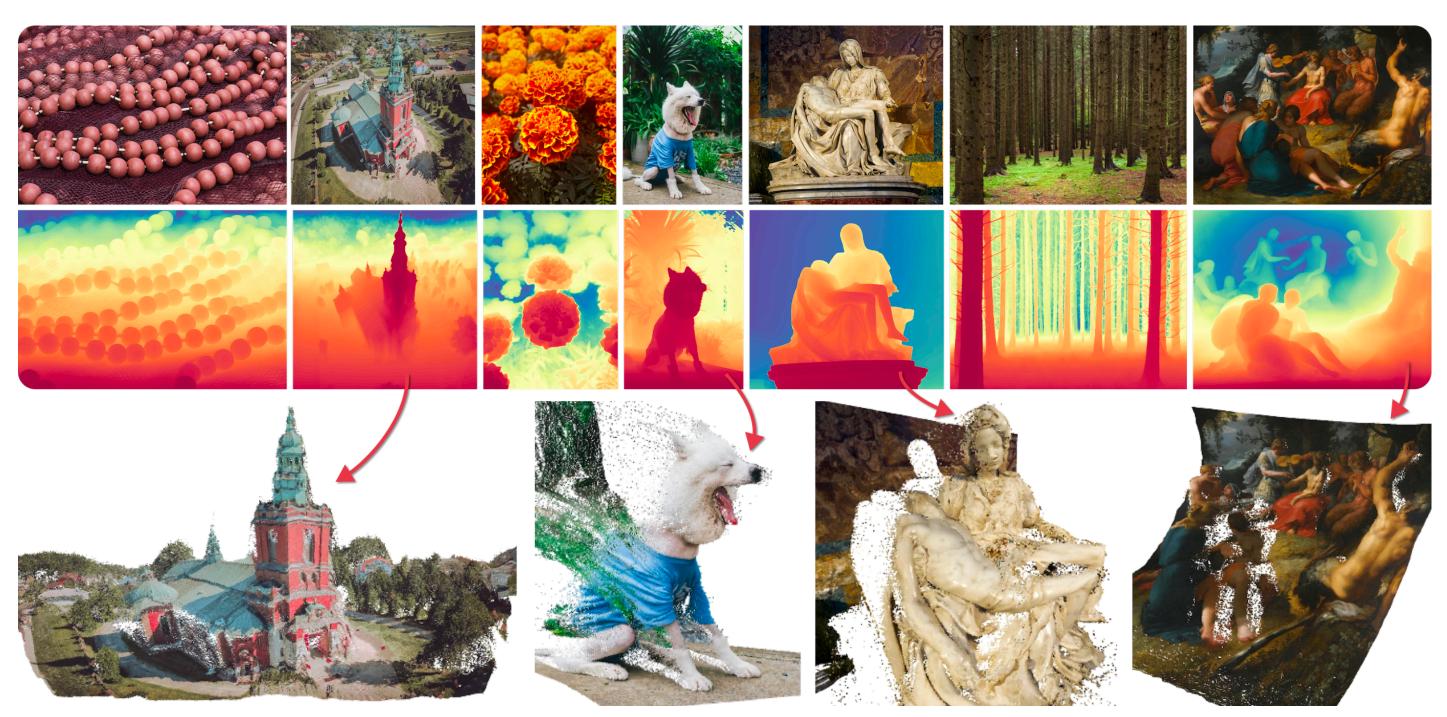


trained on 1.5M labeled images and 62M+ unlabeled **images** jointly

Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation

Bingxin Ke

Anton Obukhov Shengyu Huang Nando Metzger Rodrigo Caye Daudt Konrad Schindler Photogrammetry and Remote Sensing, ETH Zürich

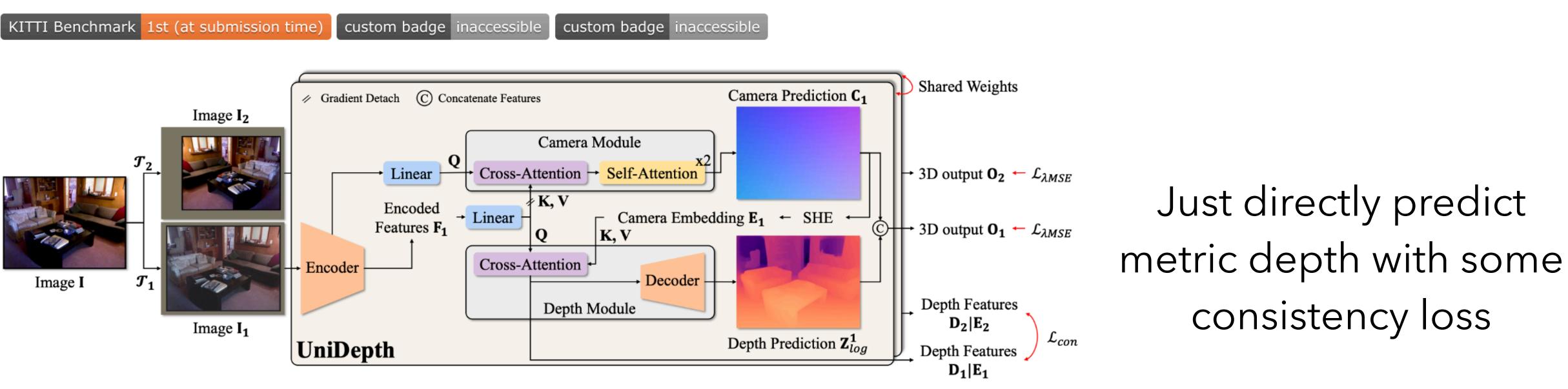


Marigold, CVPR 2024

Adapt SOTA diffusion models for depth prediction

UniDepth: Universal Monocular Metric Depth Estimation

KITTI Benchmark 1st (at submission time)



UniDepth: Universal Monocular Metric Depth Estimation,

Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia Segu, Siyuan Li, Luc Van Gool, Fisher Yu, CVPR 2024,

Paper at arXiv 2403.18913

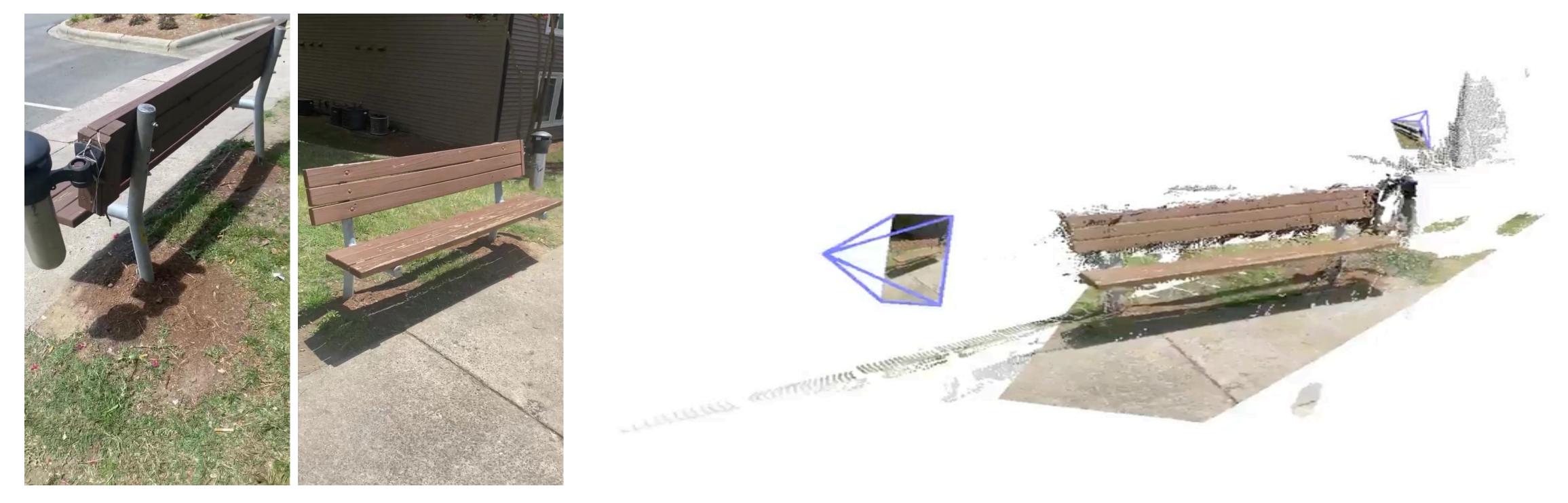
MoGe: Unlocking Accurate Monocular eometry Estimation for Open-Domain ges with Optimal Training Supervision

g Wang^{1,2}, Sicheng Xu², Cassie Dai^{3,2}, Jianfeng Xiang^{4,2}, Yu Deng², Xin Tong², Jiaolong Yang² ¹USTC, ²Microsoft Research, ³Harvard, ⁴Tsinghua University

Predict per-pixel xyz points in a canonical coordinate frame instead of depth

But.. mono depth is 2.5D! What about actual 3D?

DUSt3R [Wang et al CVPR 2024]



Shuzhe Wang Aalto University

Vincent Leroy Naverlabs Europe

Yohann Cabon Naverlabs Europe

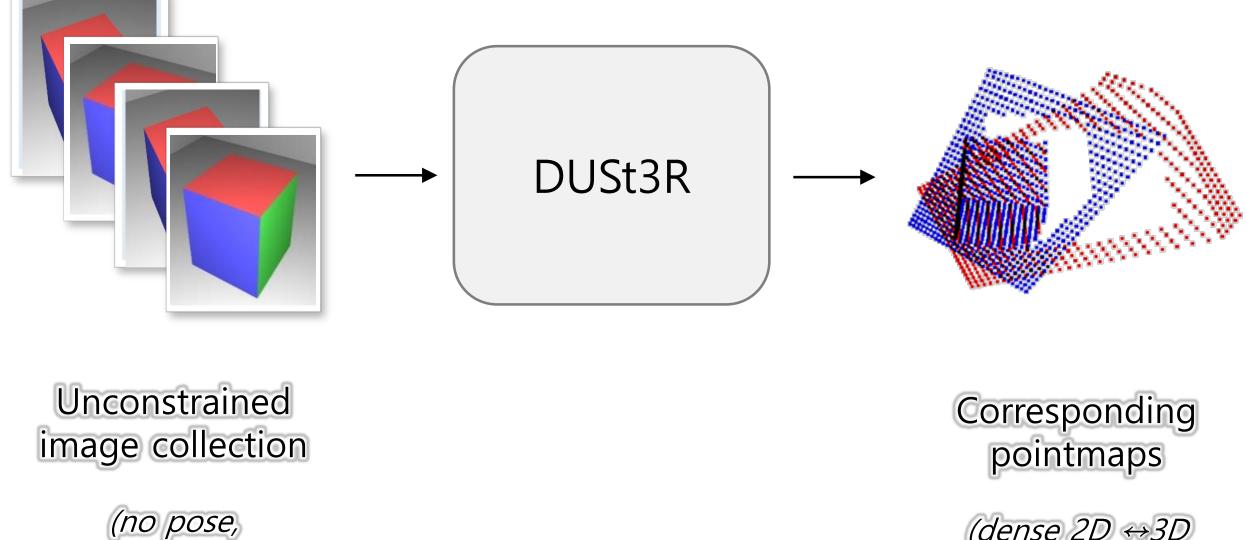
Next slides from this talk!

From CroCo to MASt3R - Naver Labs Europe

Boris Chidlovskii Naverlabs Europe

Jérome Revaud Naverlabs Europe

- Pointmaps as a proxy output that:
 - capture 3D scene geometry (point-cloud)
 - connect pixels \leftrightarrow 3D points
 - spatially relate 2 viewpoints (relative pose)



(dense 2D ↔3D mappings)

From CroCo to MASt3R - Naver Labs Europe

no intrinsics)

- Pointmaps as a proxy output that:
 - capture 3D scene geometry (point-cloud)
 - connect pixels \leftrightarrow 3D points

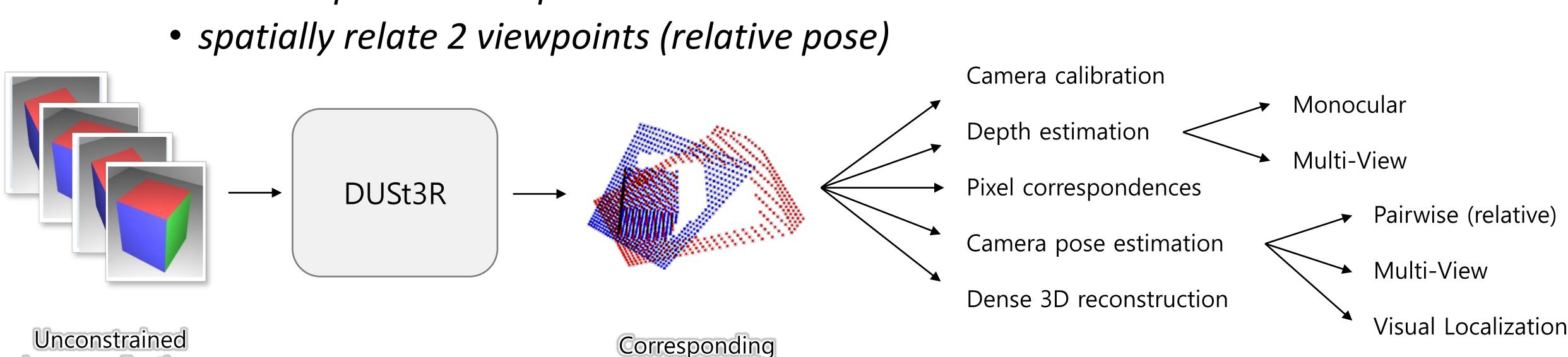


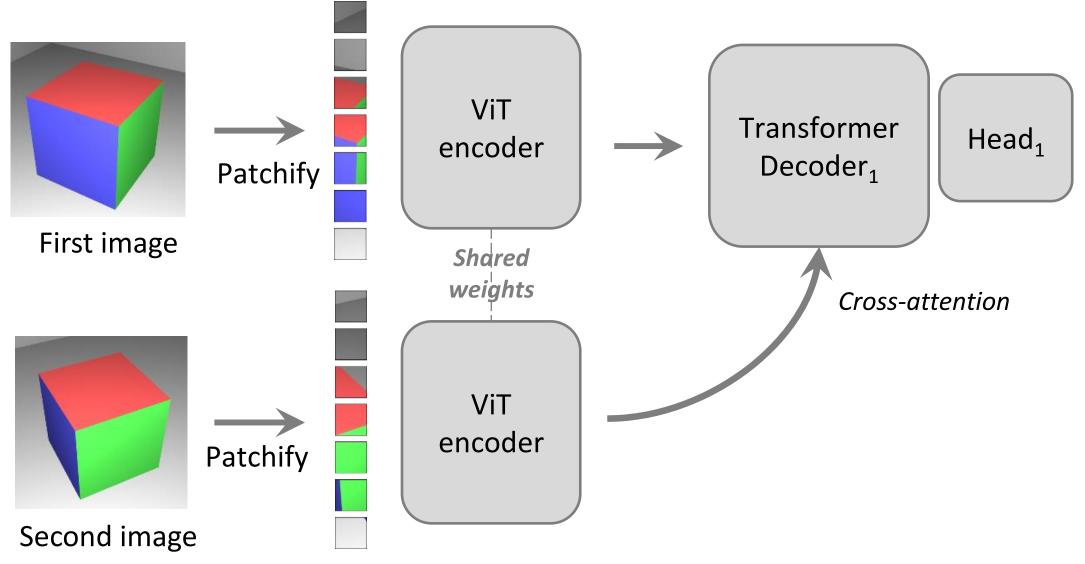
image collection

(no pose, no intrinsics)

From CroCo to MASt3R - Naver Labs Europe

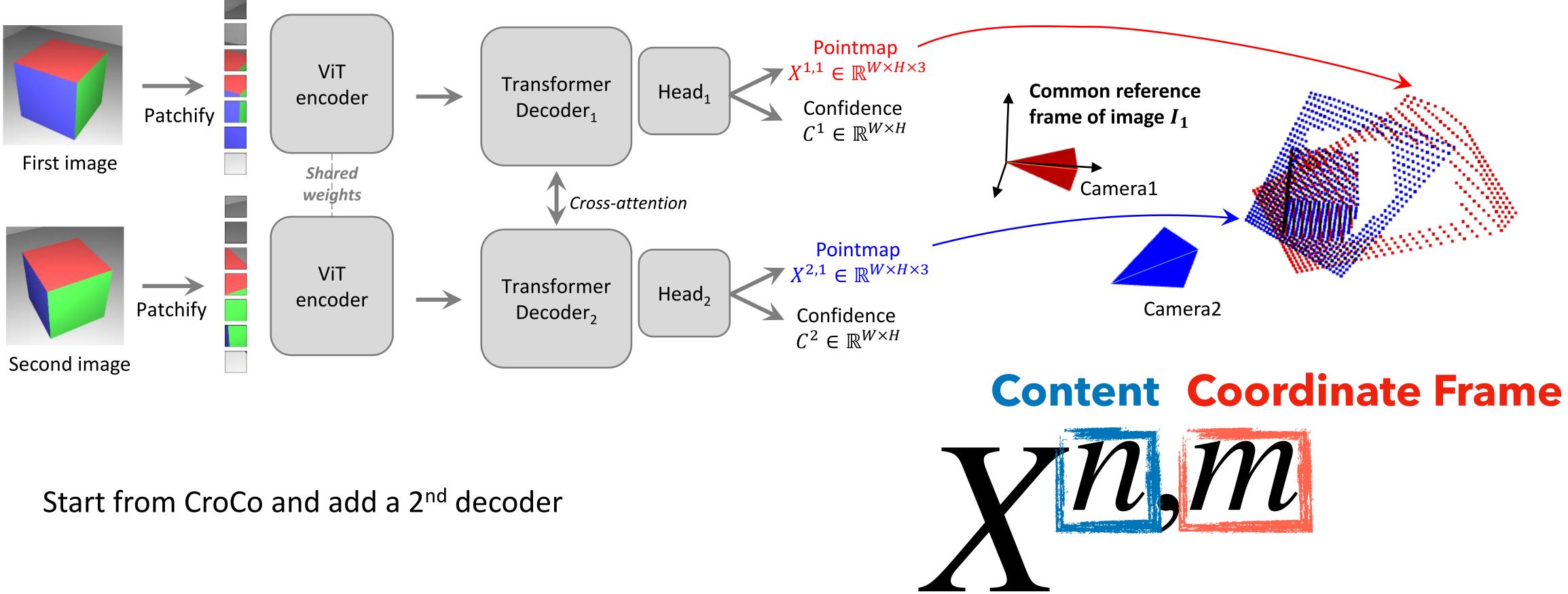
(dense 2D ↔3D *mappings)*

pointmaps

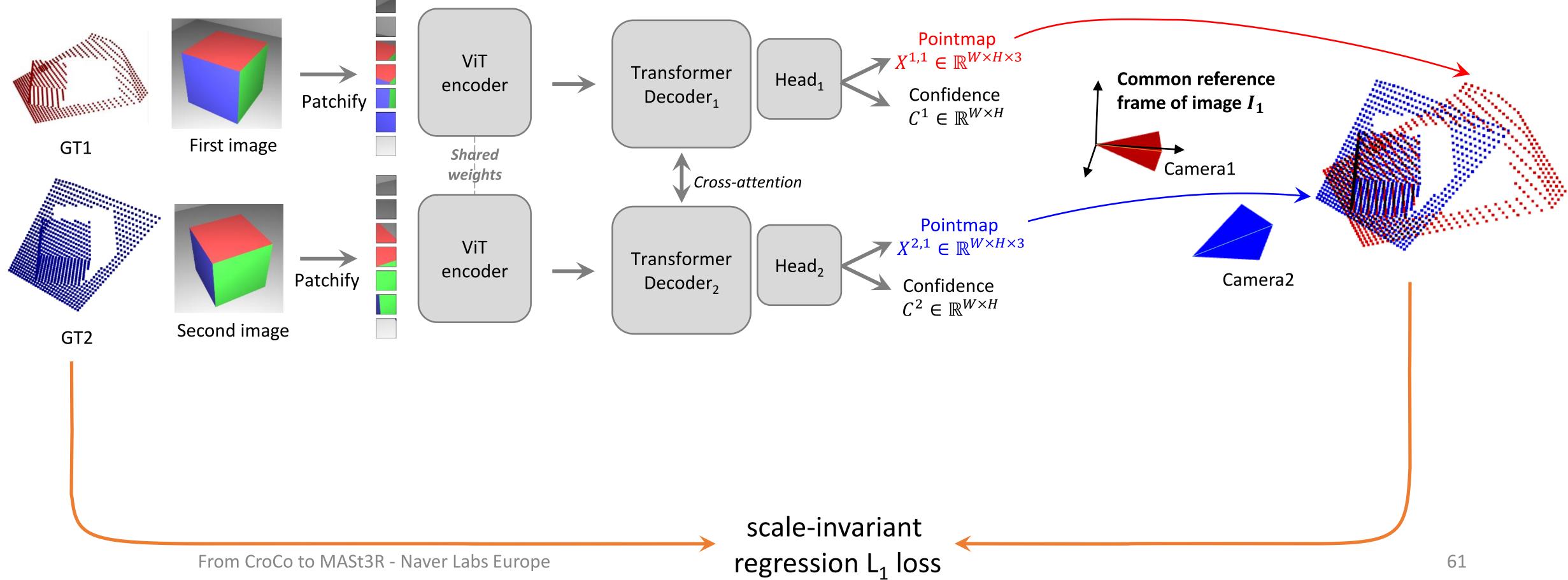


Start from CroCo ...

From CroCo to MASt3R - Naver Labs Europe



From CroCo to MASt3R - Naver Labs Europe



DUSt3R: Train it on lots of data!! Dense Unconstrained <u>Stereo 3D Reconstruction</u>

• Training data

Туре	NI
Indoor / Synthetic	10
Object-centric	9
Indoor / Real	2
Indoor / Real	20
Object / Synthetic	3
Outdoor / Real	17
Outdoor / Synthetic	10
Outdoor / Real	11
	Indoor / Synthetic Object-centric Indoor / Real Indoor / Real Object / Synthetic Outdoor / Real Outdoor / Synthetic

- Pairs 000k 941k 224k
- 040k 337k
- 761k
- 062k
- 100k

Many things you can do with Dust3r

- Point matching: NN in 3D space
- Recovering focal length
 - Assume principal point is at the center
 - Solve for $(u, v) f \frac{(X, Y)}{\pi}$ across all pixels weighted by confidence:

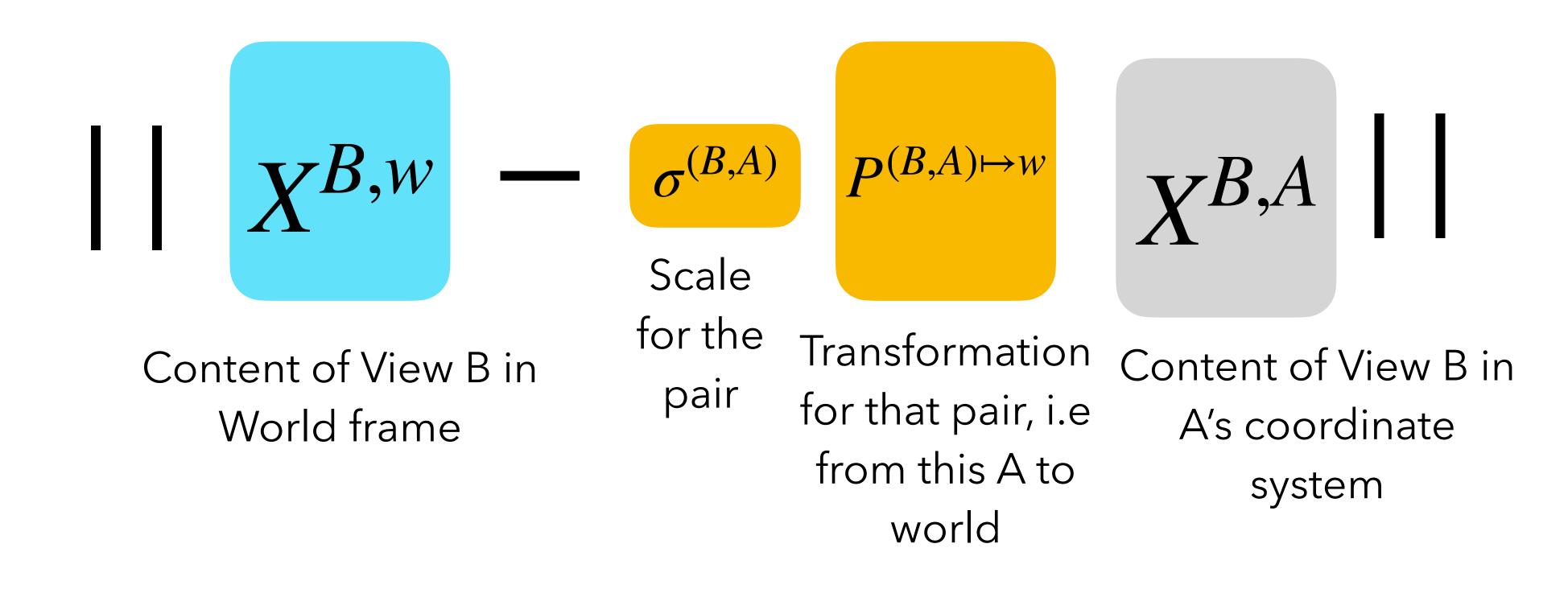
$$f_1^* = \operatorname*{arg\,min}_{f_1} \sum_{i=0}^W \sum_{j=0}^H C_{i,j}^{1,1} \left\| (i',j') - f_1 \frac{(X_{i,j,0}^{1,1}, X_{i,j,1}^{1,1})}{X_{i,j,2}^{1,1}} \right\|,$$

Many things you can do with Dust3r

- Relative Pose Estimation (between img 1 and 2)
 - Option 1: Use the focal length & 2D correspondence to get Essential matrix
 - Option 2: Solve Procrustes alignment between $X^{1,1}$ and $X^{1,2}$ by running the network twice by flipping the inputs
 - Option 3: PnP with RANSAC

Dust3r for multiple views **Global Alignment Optimization**

Run DUST3R on all pairs, then solve for world point maps with cameras

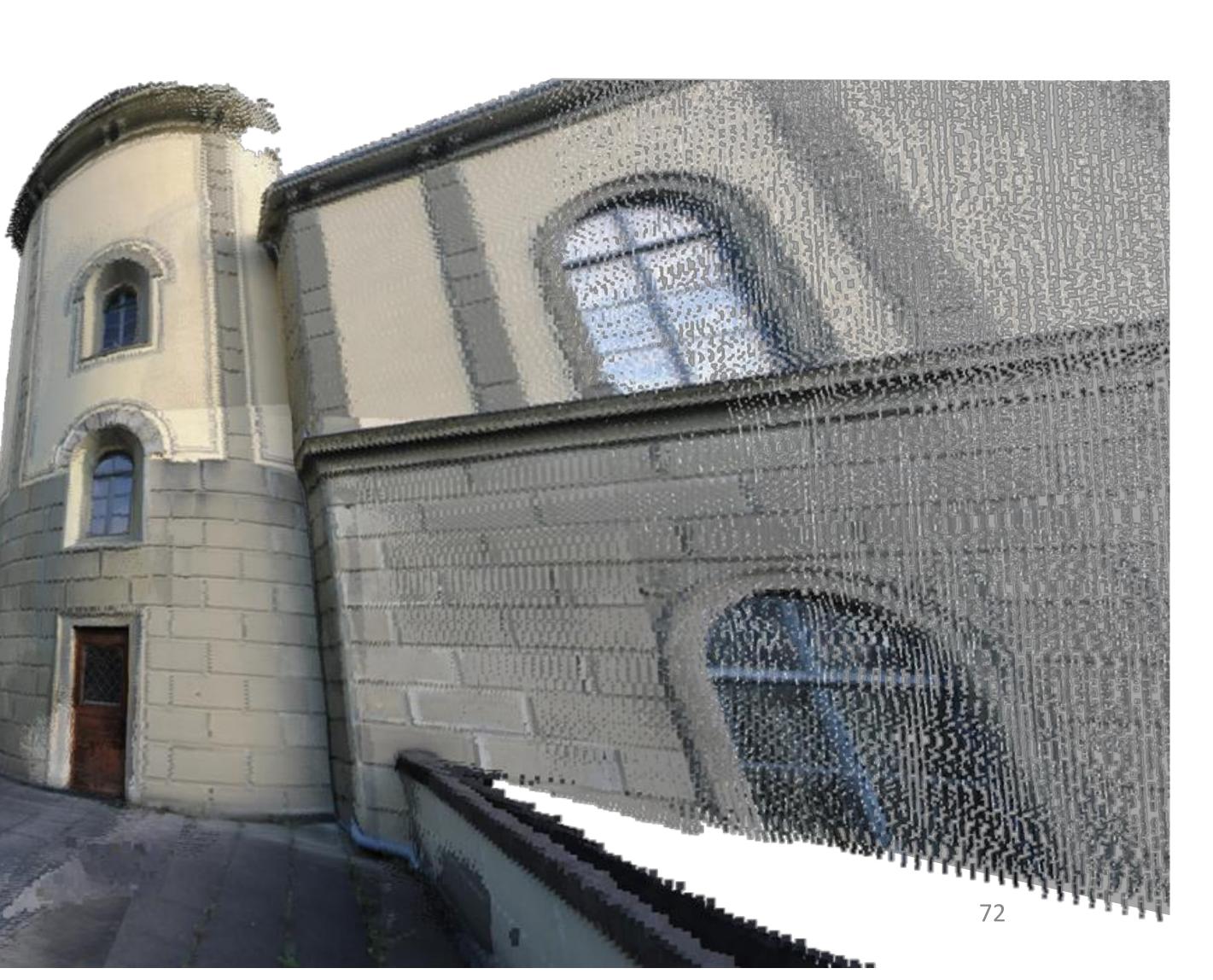


The same model works indoor ...

... and outdoor

From CroCo to MASt3R - Naver Labs Europe

the state



Opposite View reconstructions

lmg 1

Img 2

