Predicting 2.5D /3D

CS 280 2025
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With many usetul slides from Shubham Tulsiani



Monocular Depth Estimation




Depth from a Single Image
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Image credits: Paul Bourke



Learning from Direct Supervision

Input Predicted Ground-truth
—> —>
Image Label Label

CNN

IMAGENET

e v Common Objects in Context




Learning from Direct Supervision

Input Predicted Ground-truth
—> —> «—>
Image Depth Depth

CNN

A caricature recipe for
learning:
« Step 0: Decide on model and objectives
» Step 1: Collect training data (lots of [image, depth] pairs)
« Step 2: Learn a predictor
- Step 2a: Wait a few days, drink coffee and watch training
curves
» Use the predictor!



Capturing Depth

NYU Dataset. Silberman et. al.



Depth Prediction: An initial Approach
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Convolutional
Network

Input Image

Predicted Depth GT Depth

Slide credit: Justin Johnson



Depth Prediction

Need a scale-invariant
learning objective:
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Large, far object

L(y,y”) = L(ay,y")

A small, close object looks exactly s
the same as a larger, farther-away

X (for any scalar)
object. Absolute scale / depth are

ambiguous from a single image s

Image credit: Justin Johnson



Depth Prediction

Use a scale-rtnvariant
learning objective:
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Large, far object

L(y,y”) = L(ay,y")

A small, close object looks exactly TS o

the same as a larger, farther-away ~~“~~~ (fOr any Scalar)
object. Absolute scale / depth are \~~~
ambiguous from a single image ~‘~~~~
L
nmin *
Loy, y”)

Solve for the alpha that minimizes the
loss the most, and minimize that the loss



Depth Prediction via a Scale-invariant loss

I L

Convolutional
Network

Input Image Predicted Depth GT Depth

L(y,y*) = Y |llogy; —logy; + a(y,y")|

X 1 X
a(y,y") = . Z(log y; — logy;) Solution to ¢y — y * in log-space

(

Depth Map Prediction from a Single Image using a Multi-scale Deep Network. Eigen, Puhrsch, and Fergus.

NeurlPS 2014 Slide credit: Justin Johnson



Depth Prediction: Sample Results

_,J " ‘
- Accurate coarse estimates

- [naccurate around
boundaries

Depth Map Prediction from a Single Image using a Multi-scale Deep Network. Eigen, Puhrsch, and Fergus.
NeurlPS 2014



Improving Depth Prediction

More data!

Training Objectives
- Alternate scale-invariant losses?
- Better regularizers?

Improved Architectures




3D
movies
dataset

Fig. 2. Sample images from the 3D movies dataset. We show images from some of the films in the training set together with their inverse depth maps.
Sky regions and invalid pixels are masked out. Each image is taken from a different film. 3D movies provide a massive source of diverse data.




Depth Datasets

Towards Robust Monocular Depth Estimation:
Mixing Datasets for
Zero-shot Cross-dataset Transfer

René Ranftl*, Katrin Lasinger*, David Hafner, Konrad Schindler, and Vladlen Koltun

Dataset Indoor Outdoor Dynamic Video Dense Accuracy Diversity Annotation Depth # Images
DIML Indoor [31] v v Medium Medium RGB-D Metric 220K
MegaDepth [ 1] v (V) (V) Medium Medium StM No scale 130K
ReDWeb [32] v v v v Medium  High Stereo | 3600
WSVD [33] v v v v v Medium High Stereo 1.5M
3D Movies v v e v v Medium  High Stereo 75K
DIW [34] v v v Low High User clicks Ordinal pair 496K
ETH3D [35] v v v High Low Laser Metric 454
Sintel [306] v v v v v High  Medium  Synthetic (Metric) 1064
KITTI [28], [29] v (V) v (V) Medium Low  Laser/Stereo Metric 03K
NYUDv2 [30] v (V) v v Medium Low RGB-D Metric 407K
TUM-RGBD [37] V (V) v v Medium Low RGB-D Metric 80K




(b)

Disparity
Recall...

Right retinal image

Left retinal image




Depth from Disparity

disparity = Ujeft — Uright

Lots of disparity = Near by

e :
’t“ X
TN i

Small disparity = Far away

At infinity 0 movement

isparity = —— ~ ————
per depth  depth

Why is disparity a nice space to predict??
- Easy to bound [0, 1] with d,, .

- Linear in inverse depth

Web Stereo Video Supervision for Depth Prediction from Dynamic Scenes. Wang et. al.



Scale and shift ambiguity still exists

fb 1
depth  depth

disparity =

* Scale: Focal length and baselines are unknown!

» Shift: Values depend on d

.+ Which is image dependent

. Jb
» Principle points can also vary disparity = (Cg = ¢1) = depth

cR. cL: principal point in left, right

e S0 also trained with scale & shift invariant loss!



Scale and Shift-invariant Depth Prediction

Towards Robust Monocular Depth Estimation:
Mixing Datasets for
Zero-shot Cross-dataset Transfer

René Ranftl*, Katrin Lasinger*, David Hafner, Konrad Schindler, and Vladlen Koltun

Trained jointly across many datasets

Scale and shift-invariant loss on disparity (inverse-depth):

Also use additional regularizers (e.g. gradients should match)



What this means

You still need to solve for scale and shift at test time!

e At testtime you have to scale and shift it to get depth:

X 1
Z = ~
a'dpred"l'b

e Scale (a): global stretch factor, for focal length * baseline
e Shift (b): one global offset where to places the center of disparity

* Finicky...



Depth Prediction: Sample Results
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Predictions of inverse depth (upto a scale and shift)

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer. Ranftl
et. al.




Sample Results

Depth Prediction




Depth Prediction: Sample Results

Don’t judge a depth by its color — see prediction in 3D!



Sensitive to scale and shift

Learning to Recover 3D Scene Shape from a Single Image

CVPR 2021
Wei Yin', Jianming Zhang*, Oliver Wang?*, Simon Niklaus*, Long Mai*, Simon Chen*, Chunhua Shen'™
I The University of Adelaide, Australia * Adobe Research

Predicted Depth Distorted Point Cloud Recovered Shift Recovered Shift & Focal Length

Figure 1: 3D scene structure distortion of projected point clouds. While the predicted depth map is correct, the 3D scene shape of the
point cloud suffers from noticeable distortions due to an unknown depth shift and focal length (third column). Our method recovers these
parameters using 3D point cloud networks. With recovered depth shift, the walls and bed edges become straight, but the overall scene 1s
stretched (fourth column). Finally, with recovered focal length, an accurate 3D scene can be reconstructed (fifth column).
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Depth Prediction: An Active Research Area

Vision Transformers for Dense Prediction

René Rantftl Alexey Bochkovskiy Vladlen Koltun

MiDaS (MIX 6) DPT-Hybrid DPT-Large

DPT, arXiv 2020

Using Transformers
instead of convolutional
predictors




Depth Prediction: An Active Research Area

Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data

Lihe Yang! Bingyi Kang?' Zilong Huang? Xiaogang Xu®* Jiashi Feng? Hengshuang Zhao''
IThe University of Hong Kong  ?TikTok  *Zhejiang Lab  “Zhejiang University

7 corresponding authors

https://depth—-anything.github.io

= W - trained on 1.5M labeled
images and 62M+
unlabeled
images jointly

CVPR 2024



Depth Prediction: An Active Research Area

Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation

Bingxin Ke  Anton Obukhov  Shengyu Huang Nando Metzger
Rodrigo Caye Daudt  Konrad Schindler

Photogrammetry and Remote Sensing, ETH Ziirich
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Adapt SOTA diffusion
models for depth
prediction
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Marigold, CVPR 2024



UniDepth: Universal Monocular Metric Depth Estimation
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UniDepth: Universal Monocular Metric Depth Estimation,

Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia Segu, Siyuan Li, Luc Van Gool, Fisher Yu,
CVPR 2024,

Paper at arXiv 2403.18913

Depth Prediction: An Active Research Area

Just directly predict
metric depth with some
consistency loss



Depth Prediction: An Active Research Area

MoGe: Unlocking Accurate Monocular

rometry Estimation for Open-Domain
iges with Optimal Training Supervision

y Wang'2, Sicheng Xu?, Cassie Dai2, Jianfeng Xiang42, Yu Deng?, Xin Tong?, Jiaolong Yang?
1USTC, 2Microsoft Research, 3Harvard, 4Tsinghua University

CVPR 2025 Oral

Predict per-pixel xyz points
in a canonical coordinate

frame instead of depth



But.. mono depth is 2.5D!
What about actual 3D?




DUST3R

DUSt3R [Wang et al CVPR 2024]




DUSt3R:
Dense Unconstrained Stereo 3D Reconstruction

Shuzhe Wang Vincent Leroy Yohann Cabon Boris Chidlovskii Jérome Revaud
Aalto University Naverlabs Europe Naverlabs Europe Naverlabs Europe  Naverlabs Europe

Next slides from this talk!

A! NAVERLABS

From CroCo to MASt3R - Naver Labs Europe Aalto University SEU rope



DUSt3R:
Dense Unconstrained Stereo 3D Reconstruction

* Pointmaps as a proxy output that:
* capture 3D scene geometry (point-cloud)

* connect pixels <» 3D points
* spatially relate 2 viewpoints (relative pose)

I‘ r. 4 )
" — | DUSt3R
NS /
Unconstrained Corresponding
Image collection pointmaps
(ng POsE, (dense 2D +3D
no Intrinsics) mappings)

From CroCo to MASt3R - Naver Labs Europe



DUSt3R:
Dense Unconstrained Stereo 3D Reconstruction

* Pointmaps as a proxy output that:
* capture 3D scene geometry (point-cloud)
e connect pixels <~ 3D points
* spatially relate 2 viewpoints (relative pose)

Camera calibration

Monocular
Depth estimation <
Multi-View

» Pixel correspondences

4 )

— DUSt3R —

Pairwise (relative)

Camera pose estimation

\_ / Multi-View

Dense 3D reconstruction

Visual Localization

Unconstrained Corresponding
Image collection pointmaps
(no pose, (dense 2D +3D

no Intrinsics) mappings)
From CroCo to MASt3R - Naver Labs Europe 56



DUSt3R:
Dense Unconstrained Stereo 3D Reconstruction
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Start from CroCo ...

From CroCo to MASt3R - Naver Labs Europe



DUSt3R:
Dense Unconstrained Stereo 3D Reconstruction
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From CroCo to MASt3R - Naver Labs Europe 60



DUSt3R:;

Dense Unconstrained Stereo 3D Reconstruction

\‘\:‘ \ .. .'..:.:.:.:._'._
\ 1\‘?'-1':"' Patchify
GT1 First image
—>
Patchify

GT2 Second image

From CroCo to MASt3R - Naver Labs Europe
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DUJSt3R: Train it on lots of data!!
Dense Unconstrained Stereo 3D Reconstruction

* Training data

Datasets Type N Pairs
Habitat [103] Indoor / Synthetic 1000k
CO3Dv2 [93] Object-centric 041k
ScanNet++ [165] Indoor / Real 224k
ArkitScenes [25] Indoor / Real 2040k
Static Thing 3D [68] Object/ Synthetic 337k
MegaDepth [55] Outdoor / Real 1761k

BlendedMVS [161] Outdoor / Synthetic 1062k
Waymo [121] Outdoor / Real 1100k

From CroCo to MASt3R - Naver Labs Europe



Many things you can do with Dust3r

e Point matching: NN in 3D space

.‘_r','“
Gg

e Recovering focal length AR

e Assume principal pointis at the center

(X,Y)

e Solve for (u,v) — f across all pixels weighted by confidence:
<

1,1
(X,JOX,J )

,

fi —argmlnzZC (¢,7") — f1 Y11
o

1= O] 0 tyJ;




Many things you can do with Dust3r

e Relative Pose Estimation (between img 1 and 2)

e Option 1: Use the focal length & 2D correspondence to get Essential matrix

e Option 2: Solve Procrustes alignment between X! and X!* by running the
network twice by flipping the inputs

e Option 3: PnP with RANSAC



Dust3r for multiple views
Global Alignment Optimization

e Run DUST3R on all pairs, then solve for world point maps with cameras

‘ ‘ XB,W — B pBAPw XB,A ‘ ‘

Scale
for the :
Content of View B in i Transtormation cgontent of View B in
World frame P for that pair, i.e A's coordinate

from this A to
world

system
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The same model works indoor ...




Opposite View reconstructions

Img 1 Imqg 2




