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• Step 0: Decide on model and objectives
• Step 1: Collect training data (lots of [image, depth] pairs)
• Step 2: Learn a predictor

• Step 2a: Wait a few days, drink coffee and watch training 
curves

• Use the predictor!

A caricature recipe for 
learning:



Capturing Depth

NYU Dataset. Silberman et. al.
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Problem: Scale / Depth Ambiguity
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ambiguous from a single image 
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Need a scale-invariant 
learning objective:

(for any scalar)
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Problem: Scale / Depth Ambiguity

Lecture 17 - 11

Image 
Plane

Small, close 
object

Large, far object

A small, close object looks exactly 
the same as a larger, farther-away 
object. Absolute scale / depth are 
ambiguous from a single image 

Use a scale-invariant 
learning objective:

(for any scalar)

Solve for the alpha that minimizes the 
loss the most, and minimize that the loss

min



Depth Prediction via a Scale-invariant loss
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Depth Prediction: Sample Results

(a) (b) (c) (d)

Figure 2. Example depth results. (a) RGB input; (b) result of [8];
(c) our result; (d) ground truth. Note the color range of each image
is individually scaled.

Depth Prediction
Ladicky[20]Karsch[18] Baig [1] Liu [23] Eigen[8] Ours(A) Ours(VGG)

� < 1.25 0.542 – 0.597 0.614 0.614 0.697 0.769
� < 1.252 0.829 – – 0.883 0.888 0.912 0.950
� < 1.253 0.940 – – 0.971 0.972 0.977 0.988
abs rel – 0.350 0.259 0.230 0.214 0.198 0.158
sqr rel – – – – 0.204 0.180 0.121
RMS(lin) – 1.2 0.839 0.824 0.877 0.753 0.641
RMS(log) – – – – 0.283 0.255 0.214
sc-inv. – – 0.242 – 0.219 0.202 0.171
Table 1. Depth estimation measurements. Note higher is better for
top rows of the table, while lower is better for the bottom section.

Karsh et al. [18], Baig et al. [1], Liu et al. [23] and Eigen
et al. [8].

The results are shown in Table 1. Our model obtains best
performance in all metrics, due to our larger architecture
and improved training. In addition, the VGG version of our
model significantly outperforms the smaller AlexNet ver-
sion, reenforcing the importance of model size; this is the
case even though the depth task is seemingly far removed
from the classification task with which the initial coarse
weights were first trained. Qualitative results in Fig. 2 show
substantial improvement in detail sharpness over [8].

6.2. Surface Normals
Next we apply our method to surface normals predic-

tion. We compare against the 3D Primitives (3DP) and “In-
door Origami” works of Fouhey et al. [10, 11], Ladicky
et al. [21], and Wang et al. [38]. As with the depth network,
we used the full raw dataset for training, since ground-truth
normal maps can be generated for all images. Since differ-
ent systems have different ways of calculating ground truth
normal maps, we compare using both the ground truth as
constructed in [21] as well as the method used in [31]. The
differences between ground truths are due primarily to the
fact that [21] uses more aggressive smoothing; thus [21]
tends to present flatter areas, while [31] is noisier but keeps

Surface Normal Estimation (GT [21])
Angle Distance Within t� Deg.

Mean Median 11.25� 22.5� 30�

3DP [10] 35.3 31.2 16.4 36.6 48.2
Ladicky &al. [21] 33.5 23.1 27.5 49.0 58.7
Fouhey &al. [11] 35.2 17.9 40.5 54.1 58.9
Wang &al. [38] 26.9 14.8 42.0 61.2 68.2
Ours (AlexNet) 23.7 15.5 39.2 62.0 71.1
Ours (VGG) 20.9 13.2 44.4 67.2 75.9

Surface Normal Estimation (GT [31])
Angle Distance Within t� Deg.

Mean Median 11.25� 22.5� 30�

3DP [10] 37.7 34.1 14.0 32.7 44.1
Ladicky &al. [21] 35.5 25.5 24.0 45.6 55.9
Wang &al. [38] 28.8 17.9 35.2 57.1 65.5
Ours (AlexNet) 25.9 18.2 33.2 57.5 67.7
Ours (VGG) 22.2 15.3 38.6 64.0 73.9

Table 2. Surface normals prediction measured against the ground
truth constructed by [21] (top) and [31] (bottom).

more details present. We measure performance with the
same metrics as in [10]: The mean and median angle from
the ground truth across all unmasked pixels, as well as the
percent of vectors whose angle falls within three thresholds.

Results are shown in Table 2. The smaller version of
our model performs similarly or slightly better than Wang
et al., while the larger version substantially outperforms all
comparison methods. Figure 3 shows example predictions.
Note the details captured by our method, such as the curva-
ture of the blanket on the bed in the first row, sofas in the
second row, and objects in the last row.

6.3. Semantic Labels
6.3.1 NYU Depth

We finally apply our method to semantic segmentation, first
also on NYUDepth. Because this data provides a depth
channel, we use the ground-truth depth and normals as in-
put into the semantic segmentation network, as described
in Section 4.3. We evaluate our method on semantic class
sets with 4, 13 and 40 labels, described in [31], [6] and
[13], respectively. The 4-class segmentation task uses high-
level category labels “floor”, “structure”, “furniture” and
“props”, while the 13- and 40-class tasks use different sets
of more fine-grained categories. We compare with several
recent methods, using the metrics commonly used to eval-
uate each task: For the 4- and 13-class tasks we use pixel-
wise and per-class accuracy; for the 40-class task, we also
compare using the mean pixel-frequency weighted Jaccard
index of each class, and the flat mean Jaccard index.

Results are shown in Table 3. We decisively outperform
the comparison methods on the 4- and 14-class tasks. In
the 40-class task, our model outperforms Gupta et al. ’14
with both model sizes, and Long et al. with the larger size.
Qualitative results are shown in Fig. 4. Even though our
method does not use superpixels or any piecewise constant
assumptions, it nevertheless tends to produce large constant
regions most of the time.
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Depth Map Prediction from a Single Image using a Multi-scale Deep Network. Eigen, Puhrsch, and Fergus. 
NeurIPS 2014
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Improving Depth Prediction

1. More data! 

2. Training Objectives 
- Alternate scale-invariant losses?  
- Better regularizers? 

3. Improved Architectures
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Depth Datasets
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TABLE 1
Datasets used in our work. Top: Our training sets. Bottom: Our test sets. No single real-world dataset features a large number of diverse scenes

with dense and accurate ground truth.

Dataset Indoor Outdoor Dynamic Video Dense Accuracy Diversity Annotation Depth # Images

DIML Indoor [31] 3 3 3 Medium Medium RGB-D Metric 220K
MegaDepth [11] 3 (3) (3) Medium Medium SfM No scale 130K
ReDWeb [32] 3 3 3 3 Medium High Stereo No scale & shift 3600
WSVD [33] 3 3 3 3 3 Medium High Stereo No scale & shift 1.5M
3D Movies 3 3 3 3 3 Medium High Stereo No scale & shift 75K

DIW [34] 3 3 3 Low High User clicks Ordinal pair 496K
ETH3D [35] 3 3 3 High Low Laser Metric 454
Sintel [36] 3 3 3 3 3 High Medium Synthetic (Metric) 1064
KITTI [28], [29] 3 (3) 3 (3) Medium Low Laser/Stereo Metric 93K
NYUDv2 [30] 3 (3) 3 3 Medium Low RGB-D Metric 407K
TUM-RGBD [37] 3 (3) 3 3 Medium Low RGB-D Metric 80K

and motion estimation and trained it on a dataset of (static)
scenes that is the union of multiple smaller datasets. However,
they did not consider strategies for optimal mixing, or study the
impact of combining multiple datasets. Similarly, Facil et al. [43]
used multiple datasets with a naive mixing strategy for learning
monocular depth with known camera intrinsics. Their test data is
very similar to half of their training collection, namely RGB-D
recordings of indoor scenes.

3 EXISTING DATASETS

Various datasets have been proposed that are suitable for monoc-
ular depth estimation, i.e. they consist of RGB images with
corresponding depth annotation of some form [3], [11], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [40], [44], [45],
[46], [47], [48]. Datasets differ in captured environments and
objects (indoor/outdoor scenes, dynamic objects), type of depth
annotation (sparse/dense, absolute/relative depth), accuracy (laser,
time-of-flight, SfM, stereo, human annotation, synthetic data),
image quality and camera settings, as well as dataset size.

Each single dataset comes with its own characteristics and has
its own biases and problems [13]. High-accuracy data is hard to
acquire at scale and problematic for dynamic objects [35], [47],
whereas large data collections from Internet sources come with
limited image quality and depth accuracy as well as unknown
camera parameters [33], [34]. Training on a single dataset leads
to good performance on the corresponding test split of the same
dataset (same camera parameters, depth annotation, environment),
but may have limited generalization capabilities to unseen data
with different characteristics. Instead, we propose to train on a
collection of datasets, and demonstrate that this approach leads
to strongly enhanced generalization by testing on diverse datasets
that were not seen during training. We list our training and test
datasets, together with their individual characteristics, in Table 1.
Training datasets. We experiment with five existing and com-
plementary datasets for training. ReDWeb [32] (RW) is a small,
heavily curated dataset that features diverse and dynamic scenes
with ground truth that was acquired with a relatively large
stereo baseline. MegaDepth [11] (MD) is much larger, but shows
predominantly static scenes. The ground truth is usually more
accurate in background regions since wide-baseline multi-view
stereo reconstruction was used for acquisition. WSVD [33] (WS)
consists of stereo videos obtained from the web and features
diverse and dynamic scenes. This dataset is only available as

a collection of links to the stereo videos. No ground truth is
provided. We thus recreate the ground truth according to the
procedure outlined by the original authors. DIML Indoor [31]
(DL) is an RGB-D dataset of predominantly static indoor scenes,
captured with a Kinect v2.
Test datasets. To benchmark the generalization performance of
monocular depth estimation models, we chose six datasets based
on diversity and accuracy of their ground truth. DIW [34] is highly
diverse but provides ground truth only in the form of sparse
ordinal relations. ETH3D [35] features highly accurate laser-
scanned ground truth on static scenes. Sintel [36] features perfect
ground truth for synthetic scenes. KITTI [29] and NYU [30] are
commonly used datasets with characteristic biases. For the TUM
dataset [37], we use the dynamic subset that features humans in
indoor environments [38]. Note that we never fine-tune models on
any of these datasets. We refer to this experimental procedure as
zero-shot cross-dataset transfer.

4 3D MOVIES

To complement the existing datasets we propose a new data
source: 3D movies (MV). 3D movies feature high-quality video
frames in a variety of dynamic environments that range from
human-centric imagery in story- and dialogue-driven Hollywood
films to nature scenes with landscapes and animals in documentary
features. While the data does not provide metric depth, we can
use stereo matching to obtain relative depth (similar to RW and
WS). Our driving motivation is the scale and diversity of the data.
3D movies provide the largest known source of stereo pairs that
were captured in carefully controlled conditions. This offers the
possibility of tapping into millions of high-quality images from
an ever-growing library of content. We note that 3D movies have
been used in related tasks in isolation [49], [50]. We will show
that their full potential is unlocked by combining them with other,
complementary data sources. In contrast to similar data collections
in the wild [32], [33], [38], no manual filtering of problematic
content was required with this data source. Hence, the dataset
can easily be extended or adapted to specific needs (e.g. focus on
dancing humans or nature documentaries).
Challenges. Movie data comes with its own challenges and
imperfections. The primary objective when producing stereoscopic
film is providing a visually pleasing viewing experience while
avoiding discomfort for the viewer [51]. This means that the
disparity range for any given scene (also known as the depth
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Towards Robust Monocular Depth Estimation:
Mixing Datasets for

Zero-shot Cross-dataset Transfer
René Ranftl*, Katrin Lasinger*, David Hafner, Konrad Schindler, and Vladlen Koltun

Abstract—The success of monocular depth estimation relies on large and diverse training sets. Due to the challenges associated with
acquiring dense ground-truth depth across different environments at scale, a number of datasets with distinct characteristics and
biases have emerged. We develop tools that enable mixing multiple datasets during training, even if their annotations are incompatible.
In particular, we propose a robust training objective that is invariant to changes in depth range and scale, advocate the use of
principled multi-objective learning to combine data from different sources, and highlight the importance of pretraining encoders on
auxiliary tasks. Armed with these tools, we experiment with five diverse training datasets, including a new, massive data source: 3D
films. To demonstrate the generalization power of our approach we use zero-shot cross-dataset transfer, i.e. we evaluate on datasets
that were not seen during training. The experiments confirm that mixing data from complementary sources greatly improves monocular
depth estimation. Our approach clearly outperforms competing methods across diverse datasets, setting a new state of the art for
monocular depth estimation.

Index Terms—Monocular depth estimation, Single-image depth prediction, Zero-shot cross-dataset transfer, Multi-dataset training

F

1 INTRODUCTION

DEPTH is among the most useful intermediate representations
for action in physical environments [1]. Despite its utility,

monocular depth estimation remains a challenging problem that
is heavily underconstrained. To solve it, one must exploit many,
sometimes subtle, visual cues, as well as long-range context and
prior knowledge. This calls for learning-based techniques [2], [3].

To learn models that are effective across a variety of scenarios,
we need training data that is equally varied and captures the diver-
sity of the visual world. The key challenge is to acquire such data
at sufficient scale. Sensors that provide dense ground-truth depth
in dynamic scenes, such as structured light or time-of-flight, have
limited range and operating conditions [6], [7], [8]. Laser scanners
are expensive and can only provide sparse depth measurements
when the scene is in motion. Stereo cameras are a promising
source of data [9], [10], but collecting suitable stereo images
in diverse environments at scale remains a challenge. Structure-
from-motion (SfM) reconstruction has been used to construct
training data for monocular depth estimation across a variety
of scenes [11], but the result does not include independently
moving objects and is incomplete due to the limitations of multi-
view matching. On the whole, none of the existing datasets is
sufficiently rich to support the training of a model that works
robustly on real images of diverse scenes. At present, we are faced
with multiple datasets that may usefully complement each other,
but are individually biased and incomplete.

In this paper, we investigate ways to train robust monocular
depth estimation models that are expected to perform across

• R. Ranftl, D. Hafner, and V. Koltun are with the Intelligent Systems Lab,
Intel Labs.

• K. Lasinger and K. Schindler are with the Institute of Geodesy and
Photogrammetry, ETH Zürich.

*Equal contribution

diverse environments. We develop novel loss functions that are
invariant to the major sources of incompatibility between datasets,
including unknown and inconsistent scale and baselines. Our
losses enable training on data that was acquired with diverse
sensing modalities such as stereo cameras (with potentially un-
known calibration), laser scanners, and structured light sensors.
We also quantify the value of a variety of existing datasets for
monocular depth estimation and explore optimal strategies for
mixing datasets during training. In particular, we show that a
principled approach based on multi-objective optimization [12]
leads to improved results compared to a naive mixing strategy.
We further empirically highlight the importance of high-capacity
encoders, and show the unreasonable effectiveness of pretraining
the encoder on a large-scale auxiliary task.

Our extensive experiments, which cover approximately six
GPU months of computation, show that a model trained on
a rich and diverse set of images from different sources, with
an appropriate training procedure, delivers state-of-the-art results
across a variety of environments. To demonstrate this, we use the
experimental protocol of zero-shot cross-dataset transfer. That is,
we train a model on certain datasets and then test its performance
on other datasets that were never seen during training. The intu-
ition is that zero-shot cross-dataset performance is a more faithful
proxy of “real world” performance than training and testing on
subsets of a single data collection that largely exhibit the same
biases [13].

In an evaluation across six different datasets, we outperform
prior art both quantitatively and qualitatively, and set a new state
of the art for monocular depth estimation. Example results are
shown in Figure 1.
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Depth from Disparity

Web Stereo Video Supervision for Depth Prediction from Dynamic Scenes. Wang et. al.

Lots of disparity = Near by

Small disparity = Far away

At infinity 0 movement

disparity =
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depth
∼

1
depth

Why is disparity a nice space to predict?? 
- Easy to bound [0, 1] with  

- Linear in inverse depth

dmax



Scale and shift ambiguity still exists

• Scale: Focal length and baselines are unknown! 

• Shift: Values depend on , which is image dependent

• Principle points can also vary

• So also trained with scale & shift invariant loss!

dmax

disparity =
fb

depth
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1
depth

cR, cL: principal point in left, right

disparity − (cR − cL) =
fb

depth



Scale and Shift-invariant Depth Prediction
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, 2020 1

Towards Robust Monocular Depth Estimation:
Mixing Datasets for

Zero-shot Cross-dataset Transfer
René Ranftl*, Katrin Lasinger*, David Hafner, Konrad Schindler, and Vladlen Koltun

Abstract—The success of monocular depth estimation relies on large and diverse training sets. Due to the challenges associated with
acquiring dense ground-truth depth across different environments at scale, a number of datasets with distinct characteristics and
biases have emerged. We develop tools that enable mixing multiple datasets during training, even if their annotations are incompatible.
In particular, we propose a robust training objective that is invariant to changes in depth range and scale, advocate the use of
principled multi-objective learning to combine data from different sources, and highlight the importance of pretraining encoders on
auxiliary tasks. Armed with these tools, we experiment with five diverse training datasets, including a new, massive data source: 3D
films. To demonstrate the generalization power of our approach we use zero-shot cross-dataset transfer, i.e. we evaluate on datasets
that were not seen during training. The experiments confirm that mixing data from complementary sources greatly improves monocular
depth estimation. Our approach clearly outperforms competing methods across diverse datasets, setting a new state of the art for
monocular depth estimation.

Index Terms—Monocular depth estimation, Single-image depth prediction, Zero-shot cross-dataset transfer, Multi-dataset training
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1 INTRODUCTION

DEPTH is among the most useful intermediate representations
for action in physical environments [1]. Despite its utility,

monocular depth estimation remains a challenging problem that
is heavily underconstrained. To solve it, one must exploit many,
sometimes subtle, visual cues, as well as long-range context and
prior knowledge. This calls for learning-based techniques [2], [3].

To learn models that are effective across a variety of scenarios,
we need training data that is equally varied and captures the diver-
sity of the visual world. The key challenge is to acquire such data
at sufficient scale. Sensors that provide dense ground-truth depth
in dynamic scenes, such as structured light or time-of-flight, have
limited range and operating conditions [6], [7], [8]. Laser scanners
are expensive and can only provide sparse depth measurements
when the scene is in motion. Stereo cameras are a promising
source of data [9], [10], but collecting suitable stereo images
in diverse environments at scale remains a challenge. Structure-
from-motion (SfM) reconstruction has been used to construct
training data for monocular depth estimation across a variety
of scenes [11], but the result does not include independently
moving objects and is incomplete due to the limitations of multi-
view matching. On the whole, none of the existing datasets is
sufficiently rich to support the training of a model that works
robustly on real images of diverse scenes. At present, we are faced
with multiple datasets that may usefully complement each other,
but are individually biased and incomplete.

In this paper, we investigate ways to train robust monocular
depth estimation models that are expected to perform across
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diverse environments. We develop novel loss functions that are
invariant to the major sources of incompatibility between datasets,
including unknown and inconsistent scale and baselines. Our
losses enable training on data that was acquired with diverse
sensing modalities such as stereo cameras (with potentially un-
known calibration), laser scanners, and structured light sensors.
We also quantify the value of a variety of existing datasets for
monocular depth estimation and explore optimal strategies for
mixing datasets during training. In particular, we show that a
principled approach based on multi-objective optimization [12]
leads to improved results compared to a naive mixing strategy.
We further empirically highlight the importance of high-capacity
encoders, and show the unreasonable effectiveness of pretraining
the encoder on a large-scale auxiliary task.

Our extensive experiments, which cover approximately six
GPU months of computation, show that a model trained on
a rich and diverse set of images from different sources, with
an appropriate training procedure, delivers state-of-the-art results
across a variety of environments. To demonstrate this, we use the
experimental protocol of zero-shot cross-dataset transfer. That is,
we train a model on certain datasets and then test its performance
on other datasets that were never seen during training. The intu-
ition is that zero-shot cross-dataset performance is a more faithful
proxy of “real world” performance than training and testing on
subsets of a single data collection that largely exhibit the same
biases [13].

In an evaluation across six different datasets, we outperform
prior art both quantitatively and qualitatively, and set a new state
of the art for monocular depth estimation. Example results are
shown in Figure 1.

Trained jointly across many datasets
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TABLE 2
List of films and the number of extracted frames in the 3D Movies

dataset after automatic processing.

Movie title # frames

Training set 75074

Battle of the Year (2013) 4821
Billy Lynn’s Long Halftime Walk (2016) 4178
Drive Angry (2011) 328
Exodus: Gods and Kings (2014) 8063
Final Destination 5 (2011) 1437
A very Harold & Kumar 3D Christmas (2011) 3690
Hellbenders (2012) 120
The Hobbit: An Unexpected Journey (2012) 8874
Hugo (2011) 3189
The Three Musketeers (2011) 5028
Nurse 3D (2013) 492
Pina (2011) 1215
Dawn of the Planet of the Apes (2014) 5571
The Amazing Spider-Man (2012) 5618
Step Up 3D (2010) 509
Step Up: All In (2014) 2187
Transformers: Age of Extinction (2014) 8740
Le Dernier Loup / Wolf Totem (2015) 4843
X-Men: Days of Future Past (2014) 6171

Validation set 3058

The Great Gatsby (2013) 1815
Step Up: Miami Heat / Revolution (2012) 1243

Test set 788

Doctor Who - The Day of the Doctor (2013) 508
StreetDance 2 (2012) 280

ranges encountered in 3D movies are usually smaller than ranges
that are common in standard stereo setups due to the limited depth
budget.

To alleviate these problems, we apply a modern optical flow
algorithm [54] to the stereo pairs. We retain the horizontal compo-
nent of the flow as a proxy for disparity. Optical flow algorithms
naturally handle both positive and negative disparities and usually
perform well for displacements of moderate size. For each stereo
pair we use the left camera as the reference and extract the optical
flow from the left to the right image and vice versa. We perform
a left-right consistency check and mark pixels with a disparity
difference of more than 2 pixels as invalid. We automatically filter
out frames of bad disparity quality following the guidelines of
Wang et al. [33]: frames are rejected if more than 10% of all pixels
have a vertical disparity >2 pixels, the horizontal disparity range
is <10 pixels, or the percentage of pixels passing the left-right
consistency check is <70%. In a final step, we detect pixels that
belong to sky regions using a pre-trained semantic segmentation
model [55] and set their disparity to the minimum disparity in the
image.

The complete list of selected movies together with the number
of frames that remain after filtering with the automatic cleaning
pipeline is shown in Table 2. Note that discrepancies in the number
of extracted frames per movie occur due to varying runtimes as
well as varying disparity quality. We use frames from 19 movies
for training and set aside two movies for validation and two movies
for testing, respectively. Example frames from the resulting dataset
are shown in Figure 2.

5 TRAINING ON DIVERSE DATA
Training models for monocular depth estimation on diverse
datasets presents a challenge because the ground truth comes in

different forms (see Table 1). It may be in the form of absolute
depth (from laser-based measurements or stereo cameras with
known calibration), depth up to an unknown scale (from SfM), or
disparity maps (from stereo cameras with unknown calibration).
The main requirement for a sensible training scheme is to carry
out computations in an appropriate output space that is compatible
with all ground-truth representations and is numerically well-
behaved. We further need to design a loss function that is flexible
enough to handle diverse sources of data while making optimal
use of all available information.

We identify three major challenges. 1) Inherently different
representations of depth: direct vs. inverse depth representations.
2) Scale ambiguity: for some data sources, depth is only given up
to an unknown scale. 3) Shift ambiguity: some datasets provide
disparity only up to an unknown scale and global disparity shift
that is a function of the unknown baseline and a horizontal shift
of the principal points due to post-processing [33].
Scale- and shift-invariant losses. We propose to perform pre-
diction in disparity space (inverse depth up to scale and shift)
together with a family of scale- and shift-invariant dense losses
to handle the aforementioned ambiguities. Let M denote the
number of pixels in an image with valid ground truth and let ✓
be the parameters of the prediction model. Let d = d(✓) 2 RM

be a disparity prediction and let d⇤ 2 RM be the corresponding
ground-truth disparity. Individual pixels are indexed by subscripts.

We define the scale- and shift-invariant loss for a single sample
as

Lssi(d̂, d̂
⇤) =

1

2M

MX

i=1

⇢
⇣
d̂i � d̂⇤

i

⌘
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where d̂ and d̂⇤ are scaled and shifted versions of the predictions
and ground truth, and ⇢ defines the specific type of loss function.

Let s : RM ! R+ and t : RM ! R denote estimators
of the scale and translation. To define a meaningful scale- and
shift-invariant loss, a sensible requirement is that prediction and
ground truth should be appropriately aligned with respect to their
scale and shift, i.e. we need to ensure that s(d̂) ⇡ s(d̂⇤) and
t(d̂) ⇡ t(d̂⇤). We propose two different strategies for performing
this alignment.

The first approach aligns the prediction to the ground truth
based on a least-squares criterion:

(s, t) = argmin
s,t

MX
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i )

2 ,

d̂ = sd+ t, d̂⇤ = d⇤, (2)

where d̂ and d̂⇤ are the aligned prediction and ground truth,
respectively. The factors s and t can be efficiently determined in
closed form by rewriting (2) as a standard least-squares problem:
Let ~di = (di, 1)> and h = (s, t)>, then we can rewrite the
objective as

hopt = argmin
h
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which has the closed-form solution
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ranges encountered in 3D movies are usually smaller than ranges
that are common in standard stereo setups due to the limited depth
budget.

To alleviate these problems, we apply a modern optical flow
algorithm [54] to the stereo pairs. We retain the horizontal compo-
nent of the flow as a proxy for disparity. Optical flow algorithms
naturally handle both positive and negative disparities and usually
perform well for displacements of moderate size. For each stereo
pair we use the left camera as the reference and extract the optical
flow from the left to the right image and vice versa. We perform
a left-right consistency check and mark pixels with a disparity
difference of more than 2 pixels as invalid. We automatically filter
out frames of bad disparity quality following the guidelines of
Wang et al. [33]: frames are rejected if more than 10% of all pixels
have a vertical disparity >2 pixels, the horizontal disparity range
is <10 pixels, or the percentage of pixels passing the left-right
consistency check is <70%. In a final step, we detect pixels that
belong to sky regions using a pre-trained semantic segmentation
model [55] and set their disparity to the minimum disparity in the
image.

The complete list of selected movies together with the number
of frames that remain after filtering with the automatic cleaning
pipeline is shown in Table 2. Note that discrepancies in the number
of extracted frames per movie occur due to varying runtimes as
well as varying disparity quality. We use frames from 19 movies
for training and set aside two movies for validation and two movies
for testing, respectively. Example frames from the resulting dataset
are shown in Figure 2.

5 TRAINING ON DIVERSE DATA
Training models for monocular depth estimation on diverse
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depth (from laser-based measurements or stereo cameras with
known calibration), depth up to an unknown scale (from SfM), or
disparity maps (from stereo cameras with unknown calibration).
The main requirement for a sensible training scheme is to carry
out computations in an appropriate output space that is compatible
with all ground-truth representations and is numerically well-
behaved. We further need to design a loss function that is flexible
enough to handle diverse sources of data while making optimal
use of all available information.

We identify three major challenges. 1) Inherently different
representations of depth: direct vs. inverse depth representations.
2) Scale ambiguity: for some data sources, depth is only given up
to an unknown scale. 3) Shift ambiguity: some datasets provide
disparity only up to an unknown scale and global disparity shift
that is a function of the unknown baseline and a horizontal shift
of the principal points due to post-processing [33].
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2M

MX

i=1

⇢
⇣
d̂i � d̂⇤

i

⌘
, (1)

where d̂ and d̂⇤ are scaled and shifted versions of the predictions
and ground truth, and ⇢ defines the specific type of loss function.

Let s : RM ! R+ and t : RM ! R denote estimators
of the scale and translation. To define a meaningful scale- and
shift-invariant loss, a sensible requirement is that prediction and
ground truth should be appropriately aligned with respect to their
scale and shift, i.e. we need to ensure that s(d̂) ⇡ s(d̂⇤) and
t(d̂) ⇡ t(d̂⇤). We propose two different strategies for performing
this alignment.

The first approach aligns the prediction to the ground truth
based on a least-squares criterion:

(s, t) = argmin
s,t

MX

i=1

(sdi + t� d⇤
i )

2 ,

d̂ = sd+ t, d̂⇤ = d⇤, (2)

where d̂ and d̂⇤ are the aligned prediction and ground truth,
respectively. The factors s and t can be efficiently determined in
closed form by rewriting (2) as a standard least-squares problem:
Let ~di = (di, 1)> and h = (s, t)>, then we can rewrite the
objective as

hopt = argmin
h

MX

i=1

⇣
~d>
i h� d⇤

i

⌘2
, (3)

which has the closed-form solution

hopt =

 
MX

i=1

~di
~d>
i

!�1 MX

i=1

~did
⇤
i

!

. (4)

Scale and shift-invariant loss on disparity (inverse-depth):

Also use additional regularizers (e.g. gradients should match)



• At test time you have to scale and shift it to get depth: 

• Scale (a) : global stretch factor, for focal length * baseline 

• Shift (b) : one global offset where to places the center of disparity 

• Finicky…

What this means
You still need to solve for scale and shift at test time!



Depth Prediction: Sample Results

Predictions of inverse depth (upto a scale and shift)
Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer. Ranftl 
et. al.



Depth Prediction: Sample Results



Depth Prediction: Sample Results

Don’t judge a depth by its color — see prediction in 3D!



Sensitive to scale and shift

CVPR 2021



Same disparity output! Very different depth



Depth Prediction: An Active Research Area
Vision Transformers for Dense Prediction

René Ranftl Alexey Bochkovskiy

Intel Labs
rene.ranftl@intel.com

Vladlen Koltun

Abstract

We introduce dense vision transformers, an architecture

that leverages vision transformers in place of convolutional

networks as a backbone for dense prediction tasks. We as-

semble tokens from various stages of the vision transformer

into image-like representations at various resolutions and

progressively combine them into full-resolution predictions

using a convolutional decoder. The transformer backbone

processes representations at a constant and relatively high

resolution and has a global receptive field at every stage.

These properties allow the dense vision transformer to pro-

vide finer-grained and more globally coherent predictions

when compared to fully-convolutional networks. Our ex-

periments show that this architecture yields substantial im-

provements on dense prediction tasks, especially when a

large amount of training data is available. For monocular

depth estimation, we observe an improvement of up to 28%

in relative performance when compared to a state-of-the-

art fully-convolutional network. When applied to semantic

segmentation, dense vision transformers set a new state of

the art on ADE20K with 49.02% mIoU. We further show

that the architecture can be fine-tuned on smaller datasets

such as NYUv2, KITTI, and Pascal Context where it also

sets the new state of the art. Our models are available at

https://github.com/intel-isl/DPT.

1. Introduction

Virtually all existing architectures for dense prediction
are based on convolutional networks [6, 31, 34, 42, 49,
50, 53]. The design of dense prediction architectures com-
monly follows a pattern that logically separates the network
into an encoder and a decoder. The encoder is frequently
based on an image classification network, also called the
backbone, that is pretrained on a large corpus such as Im-
ageNet [9]. The decoder aggregates features from the en-
coder and converts them to the final dense predictions. Ar-
chitectural research on dense prediction frequently focuses

on the decoder and its aggregation strategy [6, 7, 50, 53].
However, it is widely recognized that the choice of back-
bone architecture has a large influence on the capabilities
of the overall model, as any information that is lost in the
encoder is impossible to recover in the decoder.

Convolutional backbones progressively downsample the
input image to extract features at multiple scales. Down-
sampling enables a progressive increase of the receptive
field, the grouping of low-level features into abstract high-
level features, and simultaneously ensures that memory
and computational requirements of the network remain
tractable. However, downsampling has distinct drawbacks
that are particularly salient in dense prediction tasks: fea-
ture resolution and granularity are lost in the deeper stages
of the model and can thus be hard to recover in the decoder.
While feature resolution and granularity may not matter for
some tasks, such as image classification, they are critical
for dense prediction, where the architecture should ideally
be able to resolve features at or close to the resolution of the
input image.

Various techniques to mitigate the loss of feature gran-
ularity have been proposed. These include training at
higher input resolution (if the computational budget per-
mits), dilated convolutions [49] to rapidly increase the re-
ceptive field without downsampling, appropriately-placed
skip connections from multiple stages of the encoder to
the decoder [31], or, more recently, by connecting multi-
resolution representations in parallel throughout the net-
work [42]. While these techniques can significantly im-
prove prediction quality, the networks are still bottlenecked
by their fundamental building block: the convolution. Con-
volutions together with non-linearities form the fundamen-
tal computational unit of image analysis networks. Convo-
lutions, by definition, are linear operators that have a lim-
ited receptive field. The limited receptive field and the lim-
ited expressivity of an individual convolution necessitate se-
quential stacking into very deep architectures to acquire suf-
ficiently broad context and sufficiently high representational
power. This, however, requires the production of many in-
termediate representations that require a large amount of
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Figure 2. Sample results for monocular depth estimation. Compared to the fully-convolutional network used by MiDaS, DPT shows better
global coherence (e.g., sky, second row) and finer-grained details (e.g., tree branches, last row).

shift to the predictions before passing the result to the loss.
We fine-tune with the loss proposed by Eigen et al. [12].
We disable the gradient-matching loss for KITTI since this
dataset only provides sparse ground truth.

Tables 2 and 3 summarize the results. Our architecture
matches or improves state-of-the-art performance on both
datasets in all metrics. This indicates that DPT can also be
usefully applied to smaller datasets.

4.2. Semantic Segmentation

We choose semantic segmentation as our second task
since it is representative of discrete labeling tasks and is
a very competitive proving ground for dense prediction ar-
chitectures. We employ the same backbone and decoder
structure as in previous experiments. We use an output head
that predicts at half resolution and upsamples the logits to
full resolution using bilinear interpolation (details in sup-
plementary material). The encoder is again initialized from
ImageNet-pretrained weights, and the decoder is initialized
randomly.
Experimental protocol. We closely follow the protocol es-
tablished by Zhang et al. [51]. We employ a cross-entropy
loss and add an auxiliary output head together with an aux-
iliary loss to the output of the penultimate fusion layer. We
set the weight of the auxiliary loss to 0.2. Dropout with
a rate of 0.1 is used before the final classification layer in

both heads. We use SGD with momentum 0.9 and a poly-
nomial learning rate scheduler with decay factor 0.9. We
use batch normalization in the fusion layers and train with
batch size 48. Images are resized to 520 pixels side length.
We use random horizontal flipping and random rescaling in
the range 2 (0.5, 2.0) for data augmentation. We train on
square random crops of size 480. We set the learning rate to
0.002. We use multi-scale inference at test time and report
both pixel accuracy (pixAcc) as well as mean Intersection-
over-Union (mIoU).

ADE20K. We train the DPT on the ADE20K semantic seg-
mentation dataset [54] for 240 epochs. Table 4 summa-
rizes our results on the validation set. DPT-Hybrid outper-
forms all existing fully-convolutional architectures. DPT-
Large performs slightly worse, likely because of the sig-
nificantly smaller dataset compared to our previous experi-
ments. Figure 3 provides visual comparisons. We observe
that the DPT tends to produce cleaner and finer-grained de-
lineations of object boundaries and that the predictions are
also in some cases less cluttered.

Fine-tuning on smaller datasets. We fine-tune DPT-
Hybrid on the Pascal Context dataset [26] for 50 epochs. All
other hyper-parameters remain the same. Table 5 shows re-
sults on the validation set for this experiment. We again see
that DPT can provide strong performance even on smaller
datasets.

DPT, arXiv 2020
Using Transformers 

instead of convolutional 
predictors



Depth Prediction: An Active Research Area

Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data

Lihe Yang1 Bingyi Kang2† Zilong Huang2 Xiaogang Xu3,4 Jiashi Feng2 Hengshuang Zhao1†

1The University of Hong Kong 2TikTok 3Zhejiang Lab 4Zhejiang University
† corresponding authors

https://depth-anything.github.io

Figure 1. Our model exhibits impressive generalization ability across extensive unseen scenes. Left two columns: COCO [35]. Middle two:

SA-1B [27] (a hold-out unseen set). Right two: photos captured by ourselves. Our model works robustly in low-light environments (1st and
3rd column), complex scenes (2nd and 5th column), foggy weather (5th column), and ultra-remote distance (5th and 6th column), etc.

Abstract

This work presents Depth Anything1, a highly practical
solution for robust monocular depth estimation. Without pur-
suing novel technical modules, we aim to build a simple yet
powerful foundation model dealing with any images under
any circumstances. To this end, we scale up the dataset by
designing a data engine to collect and automatically anno-
tate large-scale unlabeled data (⇠62M), which significantly
enlarges the data coverage and thus is able to reduce the
generalization error. We investigate two simple yet effective
strategies that make data scaling-up promising. First, a more
challenging optimization target is created by leveraging data
augmentation tools. It compels the model to actively seek
extra visual knowledge and acquire robust representations.
Second, an auxiliary supervision is developed to enforce
the model to inherit rich semantic priors from pre-trained
encoders. We evaluate its zero-shot capabilities extensively,
including six public datasets and randomly captured photos.
It demonstrates impressive generalization ability (Figure 1).
Further, through fine-tuning it with metric depth information
from NYUv2 and KITTI, new SOTAs are set. Our better depth
model also results in a better depth-conditioned ControlNet.
Our models are released here.

The work was done during an internship at TikTok.
1While the grammatical soundness of this name may be questionable,

we treat it as a whole and pay homage to Segment Anything [27].

1. Introduction

The field of computer vision and natural language processing
is currently experiencing a revolution with the emergence of
“foundation models” [6] that demonstrate strong zero-/few-
shot performance in various downstream scenarios [44, 58].
These successes primarily rely on large-scale training data
that can effectively cover the data distribution. Monocular
Depth Estimation (MDE), which is a fundamental problem
with broad applications in robotics [65], autonomous driv-
ing [63, 79], virtual reality [47], etc., also requires a foun-
dation model to estimate depth information from a single
image. However, this has been underexplored due to the
difficulty of building datasets with tens of millions of depth
labels. MiDaS [45] made a pioneering study along this di-
rection by training an MDE model on a collection of mixed
labeled datasets. Despite demonstrating a certain level of
zero-shot ability, MiDaS is limited by its data coverage, thus
suffering disastrous performance in some scenarios.

In this work, our goal is to build a foundation model for
MDE capable of producing high-quality depth information
for any images under any circumstances. We approach this
target from the perspective of dataset scaling-up. Tradition-
ally, depth datasets are created mainly by acquiring depth
data from sensors [18, 54], stereo matching [15], or SfM [33],
which is costly, time-consuming, or even intractable in partic-
ular situations. We instead, for the first time, pay attention to
large-scale unlabeled data. Compared with stereo images or

1
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Depth Prediction: An Active Research Area

Adapt SOTA diffusion 
models for depth 

prediction

Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation

Bingxin Ke Anton Obukhov Shengyu Huang Nando Metzger
Rodrigo Caye Daudt Konrad Schindler

Photogrammetry and Remote Sensing, ETH Zürich

Figure 1. We present Marigold, a diffusion model and associated fine-tuning protocol for monocular depth estimation. Its core
principle is to leverage the rich visual knowledge stored in modern generative image models. Our model, derived from Stable Diffusion and
fine-tuned with synthetic data, can zero-shot transfer to unseen datasets, offering state-of-the-art monocular depth estimation results.

Abstract

Monocular depth estimation is a fundamental computer

vision task. Recovering 3D depth from a single image is

geometrically ill-posed and requires scene understanding,

so it is not surprising that the rise of deep learning has led to

a breakthrough. The impressive progress of monocular depth

estimators has mirrored the growth in model capacity, from

relatively modest CNNs to large Transformer architectures.

Still, monocular depth estimators tend to struggle when pre-

sented with images with unfamiliar content and layout, since

their knowledge of the visual world is restricted by the data

seen during training, and challenged by zero-shot general-

ization to new domains. This motivates us to explore whether

the extensive priors captured in recent generative diffusion

models can enable better, more generalizable depth estima-

tion. We introduce Marigold, a method for affine-invariant

monocular depth estimation that is derived from Stable Dif-

fusion and retains its rich prior knowledge. The estimator

can be fine-tuned in a couple of days on a single GPU us-

ing only synthetic training data. It delivers state-of-the-art

performance across a wide range of datasets, including over

20% performance gains in specific cases. Project page:

https://marigoldmonodepth.github.io.

1. Introduction

Monocular depth estimation aims to transform a photo-
graphic image into a depth map, i.e., regress a range value
for every pixel. The task arises whenever the 3D scene struc-
ture is needed, and no direct range or stereo measurements

1
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Depth Prediction: An Active Research Area

Just directly predict 
metric depth with some 

consistency loss



Depth Prediction: An Active Research Area

Predict per-pixel xyz points 
in a canonical coordinate 

frame instead of depth



But.. mono depth is 2.5D!  
What about actual 3D? 



DUST3R
DUSt3R [Wang et al CVPR 2024]



Shuzhe Wang
Aalto University

Vincent Leroy
Naverlabs Europe

Yohann Cabon
Naverlabs Europe

Boris Chidlovskii
Naverlabs Europe

Jérome Revaud
Naverlabs Europe

DUSt3R: 
Dense Unconstrained Stereo 3D Reconstruction

54From CroCo to MASt3R - Naver Labs Europe

Next slides from this talk!



• Pointmaps as a proxy output that:
• capture 3D scene geometry (point-cloud)
• connect pixels  3D points
• spatially relate 2 viewpoints (relative pose)

Unconstrained
image collection

(no pose, 
no intrinsics)

DUSt3R

Corresponding 
pointmaps

(dense 2D 3D 
mappings)

DUSt3R: 
Dense Unconstrained Stereo 3D Reconstruction

55From CroCo to MASt3R - Naver Labs Europe



DUSt3R: 
Dense Unconstrained Stereo 3D Reconstruction
• Pointmaps as a proxy output that:

• capture 3D scene geometry (point-cloud)
• connect pixels  3D points
• spatially relate 2 viewpoints (relative pose)

Unconstrained
image collection

(no pose, 
no intrinsics)

DUSt3R

Camera calibration

Depth estimation

Pixel correspondences

Camera pose estimation

Dense 3D reconstruction

Monocular 

Multi-View

Pairwise (relative)

Multi-View

Visual Localization
Corresponding 

pointmaps

(dense 2D 3D 
mappings)

56From CroCo to MASt3R - Naver Labs Europe



DUSt3R: 
Dense Unconstrained Stereo 3D Reconstruction

Patchify

Second image

First image

ViT
encoder

ViT
encoder

Shared 
weights

Patchify
Transformer

Decoder1
Head1

Cross-attention

Start from CroCo …

59From CroCo to MASt3R - Naver Labs Europe



DUSt3R: 
Dense Unconstrained Stereo 3D Reconstruction

Patchify

Second image

First image

ViT
encoder

ViT
encoder

Shared 
weights

Patchify
Transformer

Decoder1
Head1

Transformer
Decoder2

Head2

Confidence 
𝐶1 ∈ ℝ𝑊×𝐻

Pointmap 
𝑋1,1 ∈ ℝ𝑊×𝐻×3

Confidence 
𝐶2 ∈ ℝ𝑊×𝐻

Pointmap 
𝑋2,1 ∈ ℝ𝑊×𝐻×3

Common reference 
frame of image 𝑰𝟏

Camera1

Camera2

Cross-attention

Start from CroCo and add a 2nd decoder

60From CroCo to MASt3R - Naver Labs Europe
Xn,m

Content Coordinate Frame



DUSt3R: 
Dense Unconstrained Stereo 3D Reconstruction

scale-invariant 
regression L1 loss

Patchify

Second image

First image

ViT
encoder

ViT
encoder

Shared 
weights

Patchify
Transformer

Decoder1
Head1

Transformer
Decoder2

Head2

Confidence 
𝐶1 ∈ ℝ𝑊×𝐻

Pointmap 
𝑋1,1 ∈ ℝ𝑊×𝐻×3

Confidence 
𝐶2 ∈ ℝ𝑊×𝐻

Pointmap 
𝑋2,1 ∈ ℝ𝑊×𝐻×3

Common reference 
frame of image 𝑰𝟏

Camera1

Camera2

Cross-attention

GT1

GT2
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DUSt3R: 
Dense Unconstrained Stereo 3D Reconstruction
• Training data

62From CroCo to MASt3R - Naver Labs Europe

Train it on lots of data!!



Many things you can do with Dust3r

• Point matching: NN in 3D space 

• Recovering focal length 

• Assume principal point is at the center 

• Solve for  across all pixels weighted by confidence:(u, v) − f
(X, Y)

z



Many things you can do with Dust3r

• Relative Pose Estimation (between img 1 and 2) 

• Option 1: Use the focal length & 2D correspondence to get Essential matrix 

• Option 2: Solve Procrustes alignment between  and  by running the 
network twice by flipping the inputs 

• Option 3: PnP with RANSAC

X1,1 X1,2



Dust3r for multiple views
Global Alignment Optimization

• Run DUST3R on all pairs, then solve for world point maps with cameras

Content of View B in 
A’s coordinate 

system

XB,A

Content of View B in 
World frame

XB,w P(B,A)↦w

Transformation 
for that pair, i.e 
from this A to 

world

−| | | |σ(B,A)

Scale 
for the 

pair



The same model works indoor …

… and outdoor
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