Prediction in goal-directed action
Fiehler et al

* Prediction allows humans and other animals to prepare for future
interactions with their environment. This is important in our
dynamically changing world that requires fast and accurate
reactions to external events.

* Knowing when and where an event is likely to occur allows us to
plan eye, hand, and body movements that are suitable for the
circumstances.

* Predicting the sensory consequences of such movements helps to
differentiate between self-produced and externally generated
movements.
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Keep extent to which one is aiming ahead of target constant by
adjusting movement direction or adjusting movement speed

Figure Legend:

More ways in which interception could be controlled.
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Efference copy asa formof prediction

* Imagine watching a train pass by. If you do not follow the train with
your eyes, its image will sweep across the retina while the image of
the context surrounding the train will not. If you do follow the train
with your eyes, its image will be (more or less) stable on the retina,
while the context's image will produce a motion sweep.

* How does the brain figure out when to attribute retinal motion to
object motion and when to attribute it to movements of the eyes?

* Von Holst and Mittelstaedt (1950) proposed that when a motor
command is sent to the muscles that move the eyes, a copy of the
efferent signal is simultaneously sent to visual areas of the brain.



Vision for Manipulation

Jitendra Malik



Eye Movements while making a cup of tea
Land,-Mennie-and-Rusted-(1999)
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Figure 1. Prints from (a) the activity video, and (b) eye-movement video of the same instant,
when the sweetener is dropped into the mug (3.14 on figure 3). The head-mounted camera and

This may be the first example of ego-exo video
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Figure 7. The specific roles of individual fixations in the first level-2 subtask (*fill the kettle’)
shown in figure 3. The pattern of saccades and intervening fixations are shown, and labels are
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Figure 8. Examples of fixation patterns
drawn from the eye-movement video-
tape. Sequences of successive fixation
positions are indicated by numbers
on the figures, and single fixations by
single black dots. Numbers beneath
each figure refer to timings in figure 3.
10 deg scale in centre applies to all
figures. (a) Initial examination of kettle.
(b) Tap control via water stream.
(c) Fitting 1id to kettle (drawing made
at fixation 4). (d) Moving kettle to
base: base is fixated. (¢) Hand being
directed to the tea-caddy. (f) Search
around the inside of fridge 2. The tea-
making milk is located at fixation 5.
(g) Fixations checking the switch and
gauge of the kettle when waiting for
it to boil. (h) Selecting a mug. Hand
goes to fixation 4. (i) Relocating sweet-
ener prior to use requires 3 fixations.
Sweetener last seen 68 s earlier.
(j) Replacing sweetener 5 s after (i).
Location on shelf is fixated first.
(k) Swirling teapot: checking spout.
(1) Pouring tea: receiving vessel fixated.



Eves are directed towards where information
that-will-be-usefulinthenearfutureistikely
to be found

* This has been demonstrated for various everyday tasks such as
making tea (Land, Mennie, & Rusted, 1999), making a sandwich
(Hayhoe, Shrivastava, Mruczek, & Pelz, 2003), walking (Matthis,
Yates, & Hayhoe, 2018) and driving (Land & Lee, 1994; Wilkie &
Wann, 2003). It has also been demonstrated for more specialized
activities such as reading the score when playing music (Furneaux &
Land, 1999).

* In all these cases, gaze precedes and guides movements of the arm
or leg. Similar eye movements guide tasks that do not involve such
movements. For instance, when reading (Rayner, 1998), searching for
an object (Eckstein, 2011), or identifying faces (Peterson &

Eckstein, 2013), observers move their eyes to where they anticipate
to find the most relevant information at each moment. In general,
people anticipate when they will need certain information



llya Repin, An Unexpected Visitor, 1884.



Estimate material circumstances
of the family

Surmise what the fémily had 4 Remember the clothes
been doing before the arrival worn by the people.
of the unexpected visitor.

3 min. recordings
of the same
subject

Remember positions of people and Estimate how long the visitor had
obiects in the room. been away from the family.



Transferring at different abstraction levels

Credit: Saurabh Gupta, UIUC
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Human Hands in Egocentric Videos are Informative
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1. Attending to hands localizes and stabilizes active objects.

2. Hands show where all we can interact in the scene.

3. Analyzing hands reveals information about objects: their state and how to interact

with them.
Slide credit: Saurabh Gupta



Interactive Object Understanding

Learn through observation of human
hands interacting with the world.

Goyal et. al. Human Hands as Probes for Interactive Object Understanding. CVPR 2022



Imitationtearning for Robot Manipulation







Contact Juggling

HaMeR Results




Reconstructing Hand-Held Objects in 3D

Jane Wu, Georgios Pavlakos, Georgia Gkioxari, Jitendra Malik
https://arxiv.org/abs/2404.06507

Input Image

MCC-HO

MCC-HO + RAR

Builds on two previous foundation models : HaMeR (Berkeley) and MCC
(Meta)


https://arxiv.org/abs/2404.06507

Multiview Compressive Coding for 3D Reconstruction
CY Wu, J Johnson, J Malik, C Feichtenhofer, G. Gkioxari
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Figure 1. Multiview Compressive Coding (MCC). (a): MCC
encodes an input RGB-D image and uses an attention-based model
to predict the occupancy and color of query points to form the final
3D reconstruction. (b): MCC generalizes to novel objects captured
with iPhones (left) or imagined by DALL-E 2 [47] (middle). It is
also general — it works not only on objects but also scenes (right).
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3D model
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3D model Discretized pose state space q;
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Inferred
Point Clouds

DexYCB MOW HOI4D
F-5 (1) F-10 () CD ()[F-5 (1) F-10 () CD ()[F-5 (1) F-10 (1) CD ()
HO [24] 024 048 476 | 003 0.06 498 | 028 051 3.86
IHOI [90] - - - | 013 024 231|042 070 27
MCC-HO 0.36 0.60 3.74 | 0.15 0.31 15.2 | 0.52 0.78 1.36

Table 2: We compare our method, MCC-HQO, to prior works on held-out test images
from DexYCB, MOW, and HOI4D. Chamfer Distance (cm?) and F-score (5mm, 10mm)
are reported.

Comparison to prior work. Chamfer Distance (cm?) and F-score (5mm, 10mm).
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A,B) Learning Object Affordances




A,B) Learning Object Affordances




Learning Object Affordances: Results




Learning Object Affordances: Results




Interactive Object Understanding

Learn through observation of human
hands interacting with the world.

Slide credit: Saurabh Gupta



Look Ma, No Hands! Agent-Environment
Factorization of Egocentric Videos

* Matthew Chang, Aditya Prakash, Saurabh Gupta
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Video Inpainting Diffusion Model (VIDM)
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Slide credit: Saurabh Gupta



Using the Factored Representations

Learn reward
function from human Use it to train robots
data =

Slide credit: Saurabh Gupta
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Affordances from Human Videos as a Versatile Representation for Robotics

Shikhar Bahl*!>  Russell Mendonca*!  Lili Chen'  Unnat Jain'?  Deepak Pathak’

ICMU 2Meta Al

Learning Visual Affordances Deployment on Robot

Figure 1. We leverage human videos to learn visual affordances that can be deployed on multiple real robot, in the wild, spanning several

tasks and leamning paradigms. Videos available at https: //vision-robotics-bridge.github.io/.
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Figure 2. VRB Overview. First, we learn an actionable representation of visual affordances from human videos: the model predicts contact
points and trajectory waypoints with supervision from future frames. For robot deployment, we query the affordance model and convert its
outputs to 3D actions to execute.
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