Camera Calibration — DLT, Zhang, PnP

| ecture based on material from Davide Scaramuzza’s course



Camera Calibration

(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )

Image
(In pixels) Camera World
. o
Point
Opl//
F Oc
=
N\
Intrinsics K Extrinsics [R 1]

X ) y “=K|Rt
W y = Z / \ [ ]\ Extrinsics

Scale factor ,
1 Camera matrix

Rotation and Translation

1

Image points World points Intrinsics matrix


https://www.mathworks.com/help/vision/ug/camera-calibration.html

_—7 ROBOTICS &
< PERCEPTION
> GROUP

s University of g
W univesiol TR irjch

Vision Algorithms for Mobile Robotics

Lecture 03
Camera Calibration

Davide Scaramuzza
http://rpq.ifi.uzh.ch



http://rpg.ifi.uzh.ch/

Tsar's Method: Calibration from 3D Objects

 This method was proposed in 1987 by Tsai and consists of measuring the 3D position of n > 6 control
points on a 3D calibration target and the 2D coordinates of their projection in the image.

Tsai, Roger Y. (1987) “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,”
EFE Joumal of Robotics and Automation, 1987. PDF. 7


https://pdfs.semanticscholar.org/0bbe/1336be701dac110b0d8145e83b87710704e6.pdf

Applying the Direct Linear Transform (DLT) algorithm

The idea of the DLT s to rewrite the perspective projection equation as a homogeneous linear equation and
solve it by standard methods. Let's write the perspective equation for a generic 3D-2D point correspondence:
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Applying the Direct Linear Transform (DLT) algorithm

The idea of the DLTis to rewrite the perspective projection equation as a homogeneous linear equation and
solve it by standard methods. Let’s write the perspective equation for a generic 3D-2D point correspondence:
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Applying the Direct Linear Transform (DLT) algorithm
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Applying the Direct Linear Transform (DLT) algorithm

Q-M=0

Minimal solution

Q(2nx12) should have rank 11 to have a unique (up to a scale) non-zero solution M

. : : . 1
Because each 3D-to-2D point correspondence provides 2 independent equations, then 5+E point correspondences are

needed (in practice 6 point correspondences!)

Over-determined solution

Forn > 6 points, a solution is the Least Square solution, which minimizes the sum of squared residuals, ||Q M| |2,
subject to the constraint ||[M||? = 1. It can be solved through Singular Value Decomposition (SVD). The solution is the
eigenvector corresponding to the smallest eigenvalue of the matrix Q7 Q (because it is the unit vector x that minimizes

11Qx||* = xTQT Qx.
Matlab instructions:

[U,S,V] = SVD(Q);
e M =V (:,12);



Applying the Direct Linear Transform (DLT) algorithm

* Once we have determined M, we can recover the intrinsic and extrinsic parameters by remembering that:

my, my, m; my, a, 0 wuln n, nt
My My My My |=( 0 a, Vot Py Pl
My My, My My, || 0 O 1__7"31 Vi F3 3]

Considering the first three columns of M, it is equal to K R,
the product of an upper triangular matrix and an orthogonal matrix

We can use the QR decomposition from linear algebra



Example of Tsar's Calibration Results

Recommendation: use many more than 6 points (ideally more than 20) and non coplanar

a, ayl/ay K> Ug Vo Average
Reprojection
error

1673.3 + 1.0063 Y 1.39 Y 379.96 | 305.78 0.365

Why is this What is this?
ratio not 17

What is this?

N—"

Corners can be detected with accuracy < 0.1 pixels HOW can we estimate the lens distortion parameters?
(see Lecture 5) How can we enforce @, = a, and K;, = 07?
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Intrinsic Parameters

(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )

[c'x c'_\.] — Optical center (the principal point), in pixels.

(fi» fy) — Focal length in pixels.

Wy ] = F/ .
o '8 6% Je=Fipx
: f\ - F/p\
0 f C F — Focal length in world units, typically expressed in millimeters.
JYy Y (p,‘-, p_\-) — Size of the pixel in world units.
() () 1 s — Skew coefficient, which is non-zero if the image axes are not perpendicular.
B - s = fytan «

The pixel skew is defined as:

Skew


https://www.mathworks.com/help/vision/ug/camera-calibration.html

Non-linear Lens Distortion

(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )

Pincushion distortion No distortion Barrel distortion

Positive radial displacement Negative radial displacement

The radial distortion coefficients model this type of distortion. The distorted points are denoted as (X4isiorted: Vdistorted):
Xdistorted = "'(1 + kl.kr2 + k2*1‘4 + k3*r6)

- 2 4 6
Ydistorted™ .V(‘l + kl*r + kZ*r + k3*r )


https://www.mathworks.com/help/vision/ug/camera-calibration.html

Reprojection Error

* The reprojection error is the Euclidean distance (in pixels) between an observed image point and the
corresponding 3D point reprojected onto the camera frame.

* The reprojection error gives us a quantitative measure of the accuracy of the calibration (ideally it should
be zero).

Pi
|
World
\/”/\ b\
,// \‘
Reprojected point /? \
1 / ’ 3 ‘\
n(PIfV, K,R, T) rved point \
i
]
/ i
]
1
Renro O /
\ | Jl U4
MIOJC : R, T //

~ -~
Ve~ -’
el -
-~ -
S -
il Treep—t L L



Reprojection Error

The reprojection error can be used to assess the quality of the camera calibration

What reprojection error is acceptable?
What are the sources of the reprojection error?

How can we further improve the calibration parameters?

® Control points ® Reprojected points
(observed points) n(Pi,K,R,T)
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Non-Linear Calibration Refinement

 The calibration parameters K, R, T determined by the DLT can be refined by minimizing the following cost:

K,R, T, lens distortion =
n
argminK,R,T,lens Z ”pi - T[(Plfll' K, R' T) ”2
i=1

* This time we also include the lens distortion (can be
set to O for initialization)

e Can be minimized using Levenberg—Marquardt
(more robust than Gauss-Newton to local minima)

® Control points ® Reprojected points
(observed points) n(Pi,K,R,T)
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Non-Linear Calibration Refinement

 The calibration parameters K, R, T determined by the DLT can be refined by minimizing the following cost:

K,R, T, lens distortion =

n
argminK,R,T,lens znpi . 77:(Plfl/’ K' R' T) ”2
i=1

e This time we also include the lens distortion (can be
set to O for initialization)

* Can be minimized using Levenberg—Marquardt
(more robust than Gauss-Newton to local minima)

® Control points ® Reprojected points
(observed points) n(Pi,K,R,T)
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Non-Linear Calibration Refinement

 The calibration parameters K, R, T determined by the DLT can be refined by minimizing the following cost:

K, R, T,lens distortion =
n
argminK,R,T,lens z ”pi = T[(Plil/' K,R, T) ”2
i=1

e This time we also include the lens distortion (can be
set to O for initialization)

e Can be minimized using Levenberg—Marquardt
(more robust than Gauss-Newton to local minima)

® Control points ® Reprojected points
(observed points) n(Pi,K,R,T)
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Non-Linear Calibration Refinement

 The calibration parameters K, R, T determined by the DLT can be refined by minimizing the following cost:

K,R, T, lens distortion =

n
argMming g r.iens z lpt — =(Pi, K, R, T)|
i=1

e This time we also include the lens distortion (can be
set to O for initialization)

* Can be minimized using Levenberg—Marquardt
(more robust than Gauss-Newton to local minima)

® Control points ® Reprojected points
(observed points) n(Pi,K,R,T)
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Zhang's Algorithm: Calibration from Planar Grids

 TsaP's calibration requires that the world’s 3D points are non-coplanar, which is not very practical

» Today’s camera calibration toolboxes (IViatlab, OpenCV) use multiple views of a planar grid (e.g., a checker
board)

 They are based on a method developed in 2000 by Zhang (Microsoft Research)

200t

400 ... :

Zhang, Aflexible new technique for camera calibration, EEE Transactions on Pattem Analysis and Machine Intelligence, 2000. PDF. .


http://www.vision.caltech.edu/bouguetj/calib_doc/
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf

Zhang's Algorithm: Calibration from Planar Grids

 Tsar's calibration requires that the world's 3D points are non-coplanar, which is not very practical

 Today’s camera calibration toolboxes (Matlab, OpenCV) use multiple views of a planar grid (e.g., a checker
board)

 They are based on a method developed in 2000 by Zhang (Microsoft Research)

Zhang, Aflexible new technique for camera calibration, EEE Transactions on Pattem Analysis and Machine Intelligence, 2000. PDF. -


http://www.vision.caltech.edu/bouguetj/calib_doc/
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf

Applying the Direct Linear Transform (DLT) algorithm

As in Tsai’'s method, we start by writing the perspective projection equation (again, we neglect the radial
distortion). However, in Zhang’s method the points are all coplanar, i.e., Z,, = 0, and thus we can write:
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Applying the Direct Linear Transform (DLT) algorithm

As in Tsai’'s method, we start by writing the perspective projection equation (again, we neglect the radial
distortion). However, in Zhang’s method the points are all coplanar, i.e., Z,, = 0, and thus we can write:
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Applying the Direct Linear Transform (DLT) algorithm

U _hll hy, h13— _Xw—
= Avi=|hy hy hyl||7Y

My hy hyy || 1

1 | X,
= Mv|=H-Y,

1 \ 1
. = This matrix is called

Homography

u h || X,

= Av|=|h || Y,
where h! is the i-th row of H "




Applying the Direct Linear Transform (DLT) algorithm

U | _th | /—Xw_
= Avi|=|h |{| Y, [—> P
L [ {1

Conversion back from homogeneous coordinates to pixel coordinates leads to:

Ju h' -P
U= T T T
A hy P _ (h, —u.h;)-P. =0
po ¥ by P (h —v,h)-P =0
A h-P
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Applying the Direct Linear Transform (DLT) algorithm

* By re-arranging the terms, we obtain:

()
(hy —u;hy)-B =0 P -h +0-hf —uP' -hl =0 :(P,T 0 —ZIIPI.T] hl :(0

= ,
OT PI-T . VIPI-T <
/15 )

(hy, =v.h)-P. =0 0-h'+P' -hy —vP' -h] =0
* For n points (from a single view), we can stack all these equations into a big matrix:

(PT 0" —uPT") (0)
0T PT —vPT M) |o

S el s Q-H=0

T AT T 0
P 0 u P N

(0" P’ -v,B )

Q (this matrix is known) H (this matrix is unknown)



Applying the Direct Linear Transform (DLT) algorithm

Q-H=0

Minimal solution

*  Q2nx9) should have rank 8 to have a unique (up to a scale) non-trivial solution H

* Each point correspondence provides 2 independent equations
* Thus, a minimum of 4 non-collinear points is required
Over-determined solution

* n24points
* It can be solved through Singular Value Decomposition (SVD) (same considerations as before)

26



How to recover K, R, T

* H can be decomposed by recalling that:

* Differently from Tsai’s, the
decomposition of H into K, R, T
requires at least two views

* |In practice the more views the better, e.g., 20-50 views spanning the entire field of view

of the camera for the best calibration results

* Notice that now each view j has a different homography H (and so a different R’ and

T7). However, K is the same for all views:
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Camera Localization (or Perspective from n Points: PnP)

« This is the problem of determining the 6DoF pose of a camera (position and orientation) with respect to
the world frame from a set of 3D-2D point correspondences.

* |t assumes the camera to be already calibrated

 The DLT can be used to solve this problem but is suboptimal. \We want to study algebraic solutions to the
problem.
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3 Points (P3P problem)

s2=12+1%2-2LgL,cosO.p

* 3 Points (non collinear): 1 B A
* up to 4 solution 2272412 _9] L cos@
2 A C A C AC

s2 =12 +12-2LgLccosBpc
3 B ¢

c Image plane
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Algebraic Approach: reduce to 4th order equation

s2 =12 +1%2-2LgL,cos04p
1 B A

s2=12+1%2-2LsLccosOac
2 A C

s2 =12 +12-2LgLccosBOpc
3 B ¢

It is known that n independent polynomial equations, in n unknowns, can have no more solutions than
the product of their respective degrees. Thus, the system can have a maximum of 8 solutions. However,
because every term in the system is either a constant or of second degree, for every real positive solution

there is a negative solution.
« Thus, with 3 points, there are at most 4 valid (positive) solutions.

M. A Fischler and R C.Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography.
Graphics and Image Processing, 1981. PDF.


https://apps.dtic.mil/dtic/tr/fulltext/u2/a460585.pdf

Algebraic Approach: reduce to 4th order equation

s2 =12 +1%2-2LgL,cos04p
1 B A

2 =124+12-2L,4L
ng A . ALc cosOyc

2 =12 +1?% -2LgL 6
§ i c BLc COSURC

» Bydefining x = Lg/L4, it can be shown that the system can be reduced to a4t order equation:

G +G1x+G x? +G3x3 +G4x4 =0

0 2

How can we disambiguate the 4 solutions? How do we determine R and T?

« A4thpoint can be used to disambiguate the solutions. A classification of the four solutions and the
determination of R and T from the point distances was given Gao's algorithm, implemented in OpenCV
(solvePnP_P3P)

Gao, Hou, Tang, Cheng. Complete Solution Classification for the Perspective-Three-Point Problem.
EEE Transactions on Pattem Analysis and Machine Intelligence, 2003. PDF.

46


https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html
http://www.mmrc.iss.ac.cn/~xgao/paper/ieee.pdf

PnP problem: Recap

Calibrated camera Uncalibrated camera
(i.e., instrinc parameters are known) (i.e., intrinsic parameters unknown)
Either DLT or EPnP can be used Only DLT can be used

EPNP: minimum number of points: 3 (P3P) +1 for disambiguation
DLT: Minimum number of points: 4 if coplanar, 6 if non-coplanar

The output of both DLT and EPnP can be refined via non-linear optimization
by minimizing the sum of squared reprojection errors



Some history...

In 1851, the French inventor Aimé Laussedat saw the possibility of using the newly invented
camera in mapping.

In 1867, Prussian architect Albrecht Medenbauer coined the name photogrammetry in his
article “Die Photometrophie.”

Substantial contributions were made by Sebastian Finsterwalder and by Erwin Kruppa, who
established the structure-from-motion theorem in 1913.

In the period preceding World War | and World War Il, aerial photogrammetry found
widespread use.

Computer vision researchers independently rediscovered many of these results in the 1970s
and 1980s; by the 1990s the classical literature had been “found”.

The terminology is slightly different from that used in computer vision e.g. finding intrinsic
parameters is the “interior orientation” problem, extrinsic parameters is the “exterior
orientation” problem.



Binocular Stereopsis

How multiple views enable one to
reconstruct depth in the world

Jitendra Malik
UC Berkeley



Binocular Stereopsis

Perceived
Object

Left Image Right Image

A

Left Eye Right Eye




Various camera configurations

* Single point of fixation where optical axes
Intersect

* Optical axes parallel (fixation at infinity)

e General case



Disparity for a fixating binocular

system
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The two basic binocular eye
movements
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Various camera configurations

* Single point of fixation where optical axes
Intersect

* Optical axes parallel (fixation at infinity)

e General case



Parallel Optical Axes
(fixation at infinity)




Parallel Optical Axes
(fixation at infinity)
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Range Sensors

—— o bd

Google Cars Drive Themselves, in Traffic *

— John Markoff, The New York Times

Velodyne LIDAR Sensor

http://www.primesense.com/, http://www.ifixit.com/,
http://mirror.umd.edu/roswiki/kinect_calibration(2f)technical.html
http://velodynelidar.com/lidar/lidar.aspx



Depth from Triangulation

Camera l Camera 2 Camera Projector
Passive Stereopsis Active Stereopsis

Active sensing simplifies the problem of estimating point
correspondences



Recall the formula for disparity with
parallel optical axes...
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b baskre £ Foal



error(distance) — Kinect type sensor

Error in distance estimate increases quadratically with the distance

I I I
e Empirical Observations
Quadratic Fit
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Bessel chose the star 61 Cygni as a likely star to be near the
Sun, and therefore to have appreciable parallax. 61 Cygni is not
nearly so bright as a Lyre, but has a very great angular movement
or proper-moiion among the stars. Bessel used an instrument
called a heliometer, Like Struve's telescope, it was mounted so
that it eould be driven by clock-work to point always at the same
star. The object-glass of Bessel’s telescope was made by the
great optician Fraunhofer, with the intention of cutting it in
halves. Fraunhofer died before the time came to earry out this
delicate operation, but it was successfully accomplished alter his
death. - '

Delicate mechanism was provided for turning the glass, and
also for moving the two halves relatively to each other; the
amount of movement being very accurately measured by screws.
Each half gives a perfect image of any object which is examined,
but the two images are shifted by an amount equal to the distance
one halt of the lens is moved along the other. *Thus when a bright
star and faint star are looked at, one half of the object-glass can
be made to give images S and s, and the other half 8" and s'. By
moving the screw exaetly the right amount &' can be made to
coincide with S, and the reading of the screw gives a measure of
the angular distance between the two stars. Bessel made obser-
vations on 98 nights extending from August 1837 to September
1838. The following table, taken from a report by Main (Mem.
R. A. 8. vol. xii. p. 29), shows how closely the mean of the
observations for each month accords with the supposition that
the star has the parallax 0”369 :—

Observed | Effect of " ! Observed | Effect of |
Mean date. | Displace- | parallax | Mean date. ' Displace- | parallax
ment. 0369, || ? ment. o, 36q.
| N
1337. " “ .: 1838' " I

Aug. 23 ......| +0197 toziz | Feb. 5......... —~0'223 — 0266
i

Sept. 14 ... 40100 +o1co || May 14 ...... 40245 +o'238
Il

Oect. 12 ...... +o'040 —o'es7 || June 19...... +4-c"360 +0'332
|

Nov. 22 ...... —o'214 —o'258 | July 13 ......| 40216 | +o'332
' |

Dee. 21 ...... —o0'322 | —o'3r7 |l Aug. 19...... +ot15t +o0227
18138, ] g

(Jan, 14 ... -¢'376 ‘ —o'318 |i Sepl. 19...... +o0'040 +o'or3
i I

The grént and difficult prdb-l'en—l-i\"h'icll-l h-r-td"o'cénpied astronomers
for many generations was thus solved for three separate stars
in 1838 :—

Modern observations.
Parallax, | Distance.

Parallax. | Distance.

a Centauri (Henderson)...... 1o | 200,000 o"‘7so 270,000
- |

61 Cygni (Bessel) ............ 0314 640,000 283 700,600 |

a Lyree (Struve) ............... o262 | 760,000 ‘10 2,000,000

(The unit of distapce is that from the Earth to the Sun.)

Distant stars

e i B

— 3

Apparent parallax
motion of near star

Parallax angle
= 1 arc second

Imagina
near starr)?

1 Parsec

Earth's motion around Sun



Various camera configurations

* Single point of fixation where optical axes
Intersect

* Optical axes parallel (fixation at infinity)

(General case;




Stereo image rectification

~
~
~
~
~
~
~
~
~

o e

e Reproject image planes onto a common
. plane parallel to the line between optical centers . \
e Pixel motion is horizontal after this transformation

e Two homographies (3x3 transform), one for each input
image reprojection

*C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.
IEEE Conf. Computer Vision and Pattern Recognition, 1999.



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Rectification example
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