
Camera Calibration – DLT, Zhang, PnP

Lecture based on material from Davide Scaramuzza’s course



Camera Calibration
(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )

https://www.mathworks.com/help/vision/ug/camera-calibration.html
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Tsai’s Method: Calibration from 3D Objects
• This method was proposed in 1987 by Tsai and consists of measuring the 3D position of 𝒏 ≥ 𝟔 control

points on a 3D calibration target and the 2D coordinates of their projection in the image.
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Tsai, Roger Y. (1987) “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,’’
IEEE Journal of Robotics and Automation, 1987. PDF.

https://pdfs.semanticscholar.org/0bbe/1336be701dac110b0d8145e83b87710704e6.pdf


Applying the Direct Linear Transform (DLT) algorithm
The idea of the DLT is to rewrite the perspective projection equation as a homogeneous linear equation and
solve it by standard methods. Let’s write the perspective equation for a generic 3D-2D point correspondence:



5



 1 

 
1 w 

w 
 Z

 Y 
 Xw u

v  =  K R T  





 




  
  

u

1
1  0 3 3332   31

w 

w 

w

2    Z

 Y 
X

v 0    21 22 23

0 1   r r r t   

r tu 0 u0   r11 r12 13 1
  v =  0  v   r r
 r t   





  



  
     1 

u

3333231

0 330 320 31

w 

w 

w
u 13u 12u 11

v 21 0 31 v 22 0 32 v 23 0 33 v 2 0 3    Z

 Y 
X

trr1  r
+ v r r + v r t + v t   

 r + u r  r + u r  r + u r ut1 + u0t3

  v = r + v 
r r



Applying the Direct Linear Transform (DLT) algorithm
The idea of the DLT is to rewrite the perspective projection equation as a homogeneous linear equation and
solve it by standard methods. Let’s write the perspective equation for a generic 3D-2D point correspondence:





 1 

 
1 w 

w 
 Z

 Y 
 Xw u

v  =  K R T  





 




  
  

u

1
1  0 3 3332   31

w 

w 

w
u

2    Z

 Y 
X

v 0    21 22 23

0 1   r r r t   

r t
v   r r r t   
u0   r11 r12 13 1 0

  v =  

0 





 



  



  

u

134 3332   31

232221

14131211

w 

   w 

w

24    Z

 Y 
X

1 m m m m

m m m m
  v = m m
 m m

What are the assumptions 
behind this this 
substitution?

6



Applying the Direct Linear Transform (DLT) algorithm
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Applying the Direct Linear Transform (DLT) algorithm

Minimal solution

1
2

• 𝑄(2𝑛×12) should have rank 11 to have a unique (up to a scale) non-zero solution 𝑀

• Because each 3D-to-2D point correspondence provides 2 independent equations, then 5+ point correspondences are
needed (in practice 6 point correspondences!)

Over-determined solution
• For 𝑛  ≥  6 points, a solution is the Least Square solution, which minimizes the sum of squared residuals, | 𝑄𝑀 |2, 

subject to the constraint | 𝑀 |2 = 1. It can be solved through Singular Value Decomposition (SVD). The solution is the 
eigenvector corresponding to the smallest eigenvalue of the matrix 𝑄𝑇𝑄 (because it is the unit vector 𝑥 that minimizes
| 𝑄𝑥 |2 = 𝑥𝑇𝑄𝑇 𝑄𝑥.

• Matlab instructions:
• [U,S,V] = SVD(Q);
• M = V(:,12);
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QM = 0
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Applying the Direct Linear Transform (DLT) algorithm
• Once we have determined M, we can recover the intrinsic and extrinsic parameters by remembering that:

M = K(R | T)
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Considering the first three columns of M, it is equal to K R, 
the product of an upper triangular matrix and an orthogonal matrix

We can use the QR decomposition from linear algebra



Example of Tsai’s Calibration Results
Recommendation: use many more than 6 points (ideally more than 20) and non coplanar

World frame

Zw

Yw Xw

𝜶𝒖 𝜶𝒖/𝜶𝒗 𝑲𝟏𝟐 𝒖𝟎 𝒗𝟎 Average 
Reprojection 

error
1673.3 1.0063 1.39 379.96 305.78 0.365

Why is this What is this?
ratio not 1?

What is this?

Corners can be detected with accuracy < 0.1 pixels 
(see Lecture 5)

How can we estimate the lens distortion parameters?
How can we enforce 𝛼𝑢 = 𝛼𝑣 and 𝐾12 = 0 ?
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Intrinsic Parameters
(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )

https://www.mathworks.com/help/vision/ug/camera-calibration.html


Non-linear Lens Distortion 
(figures from https://www.mathworks.com/help/vision/ug/camera-calibration.html )

https://www.mathworks.com/help/vision/ug/camera-calibration.html


Reprojection Error

C

𝑝𝑖Observed point
Reprojected point

𝑊𝜋 𝑃𝑖  , 𝐾, 𝑅, 𝑇

𝑅, 𝑇

• The reprojection error is the Euclidean distance (in pixels) between an observed image point and the
corresponding 3D point reprojected onto the camera frame.

• The reprojection error gives us a quantitative measure of the accuracy of the calibration (ideally it should
be zero).

Pi
W

World

Reprojection
error
𝑊𝑝𝑖 − 𝜋 𝑃𝑖  , 𝐾, 𝑅, 𝑇
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Reprojection Error
• The reprojection error can be used to assess the quality of the camera calibration
• What reprojection error is acceptable?
• What are the sources of the reprojection error?
• How can we further improve the calibration parameters?

Reprojected pointsControl points
(observed points) 𝑃𝑖𝜋 , 𝐾, 𝑅, 𝑇𝑊
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Non-Linear Calibration Refinement

𝑖=1

• This time we also include the lens distortion (can be
set to 0 for initialization)

• Can be minimized using Levenberg–Marquardt
(more robust than Gauss-Newton to local minima)

• The calibration parameters 𝐾, 𝑅, 𝑇 determined by the DLT can be refined by minimizing the following cost:

𝐾, 𝑅, 𝑇, 𝑙𝑒𝑛𝑠 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 =
𝑛

𝐾,𝑅,𝑇,𝑙𝑒𝑛𝑠 𝑊

Reprojected pointsControl points
(observed points) 𝑃𝑖𝜋 , 𝐾, 𝑅, 𝑇𝑊
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𝑎𝑟𝑔𝑚𝑖𝑛 ෍  𝑝𝑖 − 𝜋 𝑃𝑖  , 𝐾, 𝑅, 𝑇 2
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Zhang’s Algorithm: Calibration from Planar Grids
• Tsai’s calibration requires that the world’s 3D points are non-coplanar, which is not very practical
• Today’s camera calibration toolboxes (Matlab, OpenCV) use multiple views of a planar grid (e.g., a checker

board)
• They are based on a method developed in 2000 by Zhang (Microsoft Research)

Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. PDF.
19

http://www.vision.caltech.edu/bouguetj/calib_doc/
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf
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Applying the Direct Linear Transform (DLT) algorithm
As in Tsai’s method, we start by writing the perspective projection equation (again, we neglect the radial
distortion). However, in Zhang’s method the points are all coplanar, i.e., 𝒁𝒘 = 𝟎, and thus we can write:


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Applying the Direct Linear Transform (DLT) algorithm

𝑖where ℎT is the i-th row of 𝐻
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Conversion back from homogeneous coordinates to pixel coordinates leads to:

Applying the Direct Linear Transform (DLT) algorithm
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(hT − v hT )  P = 0
2 i 3 i

(hT − u hT )  P = 0
1 i 3 i



Applying the Direct Linear Transform (DLT) algorithm

• By re-arranging the terms, we obtain:

• For 𝑛 points (from a single view), we can stack all these equations into a big matrix:
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Applying the Direct Linear Transform (DLT) algorithm

QH = 0
Minimal solution

• 𝑄(2𝑛×9) should have rank 8 to have a unique (up to a scale) non-trivial solution 𝐻

• Each point correspondence provides 2 independent equations

• Thus, a minimum of 4 non-collinear points is required

Over-determined solution

• n ≥ 4 points
• It can be solved through Singular Value Decomposition (SVD) (same considerations as before)
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How to recover 𝐾, 𝑅, 𝑇

• 𝐻 can be decomposed by recalling that:
• Differently from Tsai’s, the 

decomposition of 𝐻 into 𝐾, 𝑅, 𝑇 
requires at least two views

• In practice the more views the better, e.g., 20-50 views spanning the entire field of view
of the camera for the best calibration results

• Notice that now each view 𝑗 has a different homography 𝐻𝑗 (and so a different 𝑅𝑗 and
𝑇𝑗). However, 𝑲 is the same for all views:
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Camera Localization (or Perspective from 𝑛 Points: PnP)

World

3D points

𝑅, 𝑇 =?

• This is the problem of determining the 6DoF pose of a camera (position and orientation) with respect to
the world frame from a set of 3D-2D point correspondences.

• It assumes the camera to be already calibrated
• The DLT can be used to solve this problem but is suboptimal. We want to study algebraic solutions to the 

problem.

Camera

Image plane
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3 Points (P3P problem)

• 3 Points (non collinear):
• up to 4 solution

𝑠1

𝑠2

𝑠3

𝐿𝐶

𝐶

𝐵

𝐴

𝐿𝐵

𝐿𝐴
𝜃𝐵𝐶

𝜃𝐴𝐶

𝜃𝐴𝐵
C

C’

B’
A’
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Image plane

𝑠2  = 𝐿2  + 𝐿2 − 2𝐿𝐵𝐿𝐴 cos 𝜃𝐴𝐵
1 𝐵 𝐴

𝑠2  = 𝐿2 + 𝐿2 − 2𝐿 𝐿 cos 𝜃
2 𝐴 𝐶 𝐴 𝐶 𝐴𝐶

𝑠2  = 𝐿2  + 𝐿2 − 2𝐿𝐵𝐿𝐶 cos 𝜃𝐵𝐶
3 𝐵 𝐶



Algebraic Approach: reduce to 4th order equation
𝑠2  = 𝐿2  + 𝐿2 − 2𝐿𝐵𝐿𝐴 cos 𝜃𝐴𝐵
1 𝐵 𝐴

𝑠2  = 𝐿2 + 𝐿2 − 2𝐿𝐴𝐿𝐶 cos 𝜃𝐴𝐶
2 𝐴 𝐶

𝑠2  = 𝐿2  + 𝐿2 − 2𝐿𝐵𝐿𝐶 cos 𝜃𝐵𝐶
3 𝐵 𝐶

• It is known that 𝒏 independent polynomial equations, in 𝒏 unknowns, can have no more solutions than 
the product of their respective degrees. Thus, the system can have a maximum of 8 solutions. However, 
because every term in the system is either a constant or of second degree, for every real positive solution 
there is a negative solution.

• Thus, with 3 points, there are at most 4 valid (positive) solutions.

45

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. 
Graphics and Image Processing, 1981. PDF.

https://apps.dtic.mil/dtic/tr/fulltext/u2/a460585.pdf


Algebraic Approach: reduce to 4th order equation
𝑠2  = 𝐿2  + 𝐿2 − 2𝐿𝐵𝐿𝐴 cos 𝜃𝐴𝐵
1 𝐵 𝐴

𝑠2  = 𝐿2 + 𝐿2 − 2𝐿𝐴𝐿𝐶 cos 𝜃𝐴𝐶
2 𝐴 𝐶

𝑠2  = 𝐿2  + 𝐿2 − 2𝐿𝐵𝐿𝐶 cos 𝜃𝐵𝐶
3 𝐵 𝐶

• By defining 𝒙 = 𝑳𝑩/𝑳𝑨, it can be shown that the system can be reduced to a 4th order equation:

G + G x + G x2 + G x3 + G x4 = 0
0 1 2 3 4

How can we disambiguate the 4 solutions? How do we determine 𝑅 and 𝑇?
• A 4th point can be used to disambiguate the solutions. A classification of the four solutions and the 

determination of 𝑅 and 𝑇 from the point distances was given Gao’s algorithm, implemented in OpenCV 
(solvePnP_P3P)

46Gao, Hou, Tang, Cheng. Complete Solution Classification for the Perspective-Three-Point Problem.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003. PDF.

https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html
http://www.mmrc.iss.ac.cn/~xgao/paper/ieee.pdf


32

PnP problem: Recap
Calibrated camera

(i.e., instrinc parameters are known)
Uncalibrated camera

(i.e., intrinsic parameters unknown)

Either DLT or EPnP can be used Only DLT can be used

EPnP: minimum number of points: 3 (P3P) +1 for disambiguation
DLT: Minimum number of points: 4 if coplanar, 6 if non-coplanar

The output of both DLT and EPnP can be refined via non-linear optimization
by minimizing the sum of squared reprojection errors



Some history…
• In 1851, the French inventor Aimé Laussedat saw the possibility of using the newly invented 

camera in mapping. 
• In 1867, Prussian architect Albrecht Medenbauer coined the name photogrammetry in his 

article “Die Photometrophie.”
• Substantial contributions were made by Sebastian Finsterwalder and by Erwin Kruppa, who 

established the structure-from-motion theorem in 1913.
• In the period preceding World War I and World War II, aerial photogrammetry found 

widespread use.
• Computer vision researchers independently rediscovered many of these results in the 1970s 

and 1980s; by the 1990s the classical literature had been “found”.
• The terminology is slightly different from that used in computer vision e.g. finding intrinsic 

parameters is the  “interior orientation” problem, extrinsic parameters is the “exterior 
orientation” problem.



Binocular Stereopsis
How multiple views enable one to 

reconstruct depth in the world

Jitendra Malik
UC Berkeley



Binocular Stereopsis



Various camera configurations

• Single point of fixation where optical axes 
intersect

• Optical axes parallel (fixation at infinity)

• General case



Disparity for a fixating binocular 
system



The two basic binocular eye 
movements



Various camera configurations

• Single point of fixation where optical axes 
intersect

• Optical axes parallel (fixation at infinity)

• General case



Parallel Optical Axes
(fixation at infinity)



Parallel Optical Axes
(fixation at infinity)



Range Sensors

primesense sensor (used in Kinect)

Velodyne LIDAR Sensor
http://www.primesense.com/, http://www.ifixit.com/, 
http://mirror.umd.edu/roswiki/kinect_calibration(2f)technical.html
http://velodynelidar.com/lidar/lidar.aspx



Depth from Triangulation

Camera 1 Camera 2

Passive Stereopsis

Camera Projector

Active Stereopsis

Active sensing simplifies the problem of estimating point 
correspondences



Recall the formula for disparity with 
parallel optical axes… 



error(distance) – Kinect type sensor
Error in distance estimate increases quadratically with the distance
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Empirical Observations
Quadratic Fit





Various camera configurations

• Single point of fixation where optical axes 
intersect

• Optical axes parallel (fixation at infinity)

• General case



Stereo image rectification

• Reproject image planes onto a common
•  plane parallel to the line between optical centers
• Pixel motion is horizontal after this transformation
• Two homographies (3x3 transform), one for each input 

image reprojection

•C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. 
IEEE Conf. Computer Vision and Pattern Recognition, 1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Rectification example
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