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Mathematical Abstraction
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The photoreceptor mosaic:
rods and cones are the eye’s pixels
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After dark adaptation, a single rod can respond to a
single photon




The three cone types have different
spectral sensitivity functions
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ON and OFF cells in retinal ganglia
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Receptor

Receptive
Fields

' Receptive field of this receptor
(point in visual field that can affect it)

Three receptors
that connect
through bipolar,
cells to a given
&= ganglion cell

' Combined receptive field
of the ganglion cell

Figure 6.16 Receptive fields
The receptive field of a receptor is simply the area of the visual field from which

light strikes that receptor. For any other cell in the visual system, the receptive
field is determined by which receptors connect to the cell in question.
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The receptive field of a retinal ganglion cell can be
modeled as a “Difference of Gaussians”
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Convolving an image with a filter
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Each output unit gets the weighted
sum of image pixels
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Each output unit gets the weighted
sum of input units
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—We can think of this weighting function

as the receptive field of the output unit
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Anatomy of Pathway to Visual Cortex

Pulvinar nucleus

Lateral geniculate
nucleus

Superior colliculus

Optic radiation

Primary visual cortex

© Stephen E. Palmer, 2002



9 Hubel and Weisel Experiments
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Orientation Selectivity in V1
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(a)

Receptive fields of simple cells
(discovered by Hubel & Wiesel)

(b) (c)
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response of a simple cell, constructed from
multiple center-surround cell inputs
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The 1D Gaussian and its derivatives

G! (z)’s maxima/minima occur at G”(z)’s zeros. And, we can see that
G (x) is an odd symmetric function and G} (z) is an even symmetric function.



Oriented Gaussian Derivatives in 2D

filz,y) = G, (2)Goy (y) (10.4)
fa(z,y) = G7 (2)Goy (y) (10.5)

We also consider rotated versions of these Gaussian derivative functions.

Rotgfy = G, (u)Go,(v) (10.6)
Rotgfa = G (u)G 4, (V) (10.7)

u\ [ cost! —sinf T
v /] \ sinf cos#h Y

These are useful when we convolve with 2D images, e.g. to detect edges at
different orientations.

where we set



Oriented Gaussian First and Second Derivatives
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Modeling simple cells

* Elongated directional
Gaussian derivatives

e Gabor filters could be
used instead

* Multiple orientations,
scales




Receptive fields of complex cells
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Orientation Energy

“CTT T T
1T

*OE =(I* f,0))" + (I* foon)’

 Can be used to model complex cells, as this is
Insensitive to phase

« Multiple scales



Hypercolumns in visual cortex
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Model of Striate Module in Monkeys
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Dorsal and Ventral Streams
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Rolls et al (2000) model of ventral stream
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Object Detection can be very fast

On a task of judging animal vs no
animal, humans can make mostly
correct saccades in 150 ms (Kirchner &
Thorpe, 2006)

!Rlﬁﬂﬂﬁm

— Comparable to synaptic delay in the retina,
LGN, V1, V2, V4, IT pathway.

— Doesn’t rule out feed back but shows feed
forward only is very powerful

Detection and categorization are

practically simultaneous (Grill-Spector
& Kanwisher, 2005)
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Feed-forward model of the ventral stream

RF size (°) Latency (ms)

12 80-100
5.8 e 70-90
4.8 60-80
14 50-70



Intrinsic & Extrinsic Connectivity of the Ventral Stream
(Kravitz, Saleem, Baker, Ungerleinder, Mishkin, TICS, 2013)
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Figura 2. Schematic of proposed framework. (a) Schematic of the intrinsic
connectivity of the ventral pathway on the lateral surface of the macagque brain.
Mote the inclusion of visual area V3, the middle temporal (MTYmedial superior
temporal (MST) complex, and the superior temporal sulcus (STS), which are
typically not included in reference to the ventral pathway. Rather than a simple
sequence of projections leading to the anterior inferior temporal cortex, the Medial |
pathway comprises a series of overlapping recurrent networks of various scales. At tempmal
the most local level, there are approximately four subnetworks (small black i ;
ellipses), each with strong bidirectional connections among its components.
Beyond their intrinsic components, these subnetworks are connected to each other
via more extended, bidirectional, and non-reciprocal feedback connections that
bypass intermediate regions (large black ellipses). (b) A summary of the extrinsic
connectivity of the ventral pathway. At least six distinct pathways emanate from
the occipitotemporal network. The occipitotemporo-neostriatal pathway (black
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What can we learn?

Neurons show increasing specificity higher in the
visual pathway

V1 simple and complex cells are orientation-tuned

Convolution with a linear kernel followed by simple
non-linearities is a good model for computation in
retina, LGN and V1, but beyond that we do not
have satisfactory computational models

Good designs of visual systems are likely to be
hierarchical and “mostly” feedforward



Neuroscience & Computer Vision Features

 Hubel & Wiesel’s finding of orientation selective

simple and complex cells in V1 inspired features such
as SIFT and HOG.

* A feed-forward view of processing in the ventral
stream with layers of simple and complex cells led to
the neocognitron and subsequently convolutional
networks.

* We now know that the ventral stream is much more
complicated with bidirectional as well as feedback
connections. So far this has not been exploited much
In computer vision



Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima

MHE. Broadcasting Science Research Laboratores, Kinuta, Setagaya, Toekyo, Japan
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Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron

Biol. Cybernetics 36, 193-202 (1980)




Convolutional Neural Networks
(LeCun et al)




Convolutional Neural Networks (LeCun
et al)
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