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Next few lectures

* Today: Transformers / Attention
* Next: Vision Transformers, DINO

* Next Week: Diffusion Models



What is Attention

A Computer Vision perspective



Computer Vision History on filtering

* Gaussian Filter
* Anisotropic Diffusion
* Bilateral Filter

* Non-Local Means



How to filter an image? How to do edge
Gaussian filter preserving filter?




Physical

analog: Heat diffusion
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Moving from higher to lower concentration of signal u



Physical analog: Heat diffusion
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Heat Equation — = cAu = diV(CVU) Solution is exactly
dt convolution with a

Moving from higher to lower concentration of signal u gaussian kernel!



Useful intuition for later...

Heat Equation

= cAu = le(CV’LL) SDE formulation (how dx(t) = cdW (t)

at each particle moves):



How to do edge preserving filter?

How do we keep the two soups separate?

Why does gaussian filter
destroy the edges?




Anisotropic Diffusion rerona & malik 1990

* |dea: Look to see if there is a wall,
modulate diffusion across the edge!

* Anisotropic Diffusion:

* Treats the edges in the image like this wall

du _
Frie div(c(|Vu|)Vu)

* Makes the diffusion process, edge dependent
* = Data dependent filtering




tropic Diffusion Results

Figure 3.7,  Sequence of images produced by anisotropic diffusion. The code presented
in figure 3.5 was run on the image at the top-left corner for 10, 20, 30, 60, 100 iterations.
The original image has pixel vahies between 0 (black) and 255 (white) and had a size of
100 x 100 pixels. The coefficient K was set equal to K = 10.




Aurich and Weule 1995

Tomasi and Manduchi 1998...

Bilateral Filter

Photo from wikipedia



Aurich and Weule 1995
Tomasi and Manduchi 1998...

Bilateral Filter

bilateral filter weights of the central pixel

spatial weight range weight

* Inspired by Anisotropic
Diffusion

* Weight gaussian kernel with  input
pixel similarity

result

* Again data-dependent
* This is core idea of ROPE

Distance Similarity
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multiplication of range
and spatial weights

Pixel Similarity Figure from paris et al.



Bilateral Filter Results
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Non-local means Buades, Coll, and Morel 2005

* Idea of a filter is to denoise by averaging
similar pixels

* Why look at near by pixels only? The similar
pixels can be anywhere!

* Idea: filter by average of similar patches,
from everywhere in the image!

* Data-driven weights (similarity) with large
field of view.




Non-local means

NL[](&) =Y w(i,j)v(j),

Jjel

Weight is normalized affinity to all other pixels:
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Softmax! In vectorized form, this is:

NL = Softmax(dist(vi, vj))V



Results

Anisotropic Filter Total Variation Non-local means



Aside Efros and Leung 1999

* Inspired non-local means

llllllll=lllllllL non-parametric =

sampling

o

Input image

Synthesizing a pixel



Two key ideas

In contrast to ordinary convlution by a fixed kernel

1. Data-driven kernel > Weights conditioned on the data point

2. Full field of view =2 non-local connections

These are the key difference between convnets and transformers



Convolvution:

Window K

Attention:

N
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Transformer Architecture

Excellent slides from Jiabin Huang (UMD) for the rest
https: / /www.youtube.com /watch?v=rcWMRAQE5RI



https://www.youtube.com/watch?v=rcWMRA9E5RI
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Please explain
transformers like | am five

trRNSIOrMer

Sure! Let's break down what a transformer is in a way that's easy to understand.

Imagine you have a big book, and you want to summarize each chapter. A traditional way to do this
might be to read each chapter from start to finish and write down the important points. But what if
you could read the whole chapter at once and instantly understand which parts are important?

That's kind of what a transformer does!

Key Parts of a Transformer

1. Input Representation: The text is turned into a form that the transformer can understand,

usually a list of numbers.

2. Attention Mechanism: This is like a spotlight that shines on different parts of the text, helping
the transformer focus on the important bits. The cool thing is, it can shine on multiple parts at

once, not just one word at a time.

3. Layers: The transformer has several layers, and each layer helps it understand the text better,

Think of these layers as levels in a video game, where each level makes you a bit stronger and

better at the game.

How It Works

1. Reading the Text: When you give a transformer a sentence, it first converts each word into a

number.

2. Understanding Relationships: The transformer then uses the attention mechanism to figure
out how words in the sentence relate to each other. For example, in the sentence "The cat sat

on the mat," it understands that "cat" and "sat" are related.

3. Processing Layers: The sentence goes through multiple layers, with each layer making the

understanding of the sentence a bit clearer.

4. Output: Finally, the transformer gives its output. This could be a translation of the sentence

into another language, a summary, or even the next word in a text you're writing.

Why It's Cool

Transformers are powerful because they car.‘].’.andle long sentences and understand context really

ChatGPT (OpenAl)



Beautiful, snowy Tokyo city is
bustling. The camera moves
through the bustling city
street, following several people
enjoying the beautiful snowy
weather and shopping at
nearby stalls. Gorgeous sakura
petals are flying through the

trRNSIOrMer

wind along with snowflakes.
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Sora (OpenAl)



Which street was this photo
taken on?

trRnNSIOrmer

oo]

( )
The photo was taken on

Bourbon Street, which is
located in the French Quarter
of New Orleans, Louisiana.
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Unified-10 (Al2)
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AuTo-regressive
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Tokenization

Many words map to one token, but some don't: indivisible.
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TOKEN EMBEDDING

One-hot encoding
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TOKEN EMBEDDING
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TOKEN EMBEDDING
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TOKEN EMBEDDING
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TOKEN EMBEDDING

Embedding Space
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TOKEN EMBEDDIN A A
bought an apple and an orange.
N
bought an apple watch.
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Self-Attention @ 0
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Self-Attention
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Self-Attention a £
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Self-Attention
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Self-Attention
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Updated feature xil = afmxl + aé’hzxz + CL’;,3X3 + “4,},4x4 + aAIL,SxS
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Updated feature xil

delicious apple
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Attention(Q, K, V) = V softmax
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Single-head attention
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Single-head attention
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Single-head attention

Attention(Q, K, V) = V softmax

Multi-head attention
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Feed Forward Network (FFN)
FFN(x) = ReLU(W . x+ b,) +

Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward

Encoder #1

[ Multi-head Self-Attention ]
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ReLU

FFN(x) = W, ReLU(W,x+ b,) + b,

Feed Forward Network (FFN) - III II
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Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward

Encoder #1
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Feed Feed Feed Feed Feed
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Encoder #1

[ Multi-head Self-Attention ]
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Feed Feed Feed Feed Feed
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Encoder #1
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. Positional encoding
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Forward Forward Forward Forward Forward
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Positional encoding
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Positional encoding
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Positional encoding

Sinusoidal positional encoding

Relative positional encoding
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Residual connection
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Residual connection
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V, Residual connection

Layer normalization
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Examples:

E[ﬁ]@@@ﬂ@[ﬁc@@@@@]@[ﬁ Attention is all you need, T5, BART.
Transiormer
Good for:
Machine translation, summarization. QA
(when input/target are sufficiently different)
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Examples:
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Examples:
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