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This homework is due on Monday, Jan 27, 2025, at 11:59PM.

1 Pose, Shape and Geometric Transformations
Points on an object can be characterized by their 3D coordinates with respect to the camera coordinate
system. But what happens, when we move the object? In a certain sense when a chair is moved in 3D space,
it remains the “same” even though the coordinates of points on it with respect to the camera (or any fixed)
coordinate system do change. This distinction is captured by the use of the terms pose and shape.

• Pose: The position and orientation of the object with respect to the camera. This is specified by 6
numbers (3 for its translation, 3 for rotation). For example, we might consider the coordinates of the
centroid of the object relative to the center of projection, and the rotation of a coordinate frame on the
object with respect to that of the camera.

• Shape: The coordinates of the points of an object relative to a coordinate frame on the object. These
remain invariant when the object undergoes rotations and translations.

To make these notions more precise, we need to develop the basic theory of Euclidean Transformations.
The set of transformations defines a notion of “congruence” or having the same shape. In high school
geometry we learned that two planar triangles are congruent if one of them can be rotated and translated so
as to lie exactly on top of another. Rotation and translation are examples of Euclidean transformations, also
known as isometries or rigid body motions, defined as transformation that preserve distances between any
pair of points. When I move a chair, this holds true between any pair of points on the chair, but obviously
not for points on a balloon that is being inflated.

In this chapter we will review the basic concepts relevant to Euclidean transformations. Then we will
study a more general class of transformations, called affine transformations, which include Euclidean
transformations as a subset. The set of projective transformations is even more general, and is a superset
of affine transformations. All three classes of transformations find utility in a study of vision.

2 Euclidean Transformations
A Matrix
a Vector
I The identity matrix

ψ : Rn 7→ Rn Transformation
x · y Dot product (scalar product)
x ∧ y Cross product (vector product)

||x|| =
√
x · x Norm

Definition 1 Euclidean transformations (also known as isometries) are transformations that preserve dis-
tances between pairs of points.

||ψ(a)− ψ(b)|| = ||a− b|| (1)



Translations, ψ(a) = a+ t, are isometries, since

||ψ(a)− ψ(b)|| = ||t+ a− (t+ b)|| = ||a− b|| (2)

We now define orthogonal transformations; these constitute another major class of isometries.

Definition 2 A linear transformation: ψ(a) = Aa, for some matrix A.

Definition 3 Orthogonal transformations are linear transformations which preserve inner products.

a · b = ψ(a) · ψ(b) (3)

Property 1 Orthogonal transformations preserve norms.

a · a = ψ(a) · ψ(a) =⇒ ||a|| = ||ψ(a)|| (4)

Property 2 Orthogonal transformations are isometries.

(ψ(a)− ψ(b)) · (ψ(a)− ψ(b))
?
= (a− b) · (a− b) (5)

||ψ(a)||2 + ||ψ(b)||2 − 2(ψ(a) · ψ(b)) ?
= ||a||2 + ||b||2 − 2(a · b) (6)

By property 1,

||ψ(a)||2 = ||a||2 (7)

||ψ(b)||2 = ||b||2. (8)

By definition 3,
ψ(a) · ψ(b) = a · b. (9)

Thus, equality holds.

Note that translations do not preserve norms (the distance with respect to the origin changes) and are not
even linear transformations, except for the trivial case of translation by 0.

2.1 Properties of orthogonal matrices
Let ψ be an orthogonal transformation whose action we can represent by matrix multiplication, ψ(a) = Aa.
Then, because it preserves inner products:

ψ(a) · ψ(b) = aTb . (10)

By substitution,

ψ(a) · ψ(b) = (Aa)T (Ab) (11)

= aTATAb . (12)

Thus,
aTb = aTATAb =⇒ ATA = I =⇒ AT = A−1 . (13)



Note that det(A)2 = 1 which implies that det(A) = +1 or −1. Each column of A has norm 1, and is
orthogonal to the other column.

In 2D, these constraints put together force A to be one of two types of matrices.[
cos θ − sin θ
sin θ cos θ

]
︸ ︷︷ ︸

rotation, det=+1

or
[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
︸ ︷︷ ︸

reflection,det=−1

Under a rotation by angle θ, [
1
0

]
7→

[
cos θ
sin θ

]
and

[
0
1

]
7→

[
− sin θ
cos θ

]
The reflection matrix above corresponds to reflection around the line with angle θ

2 (verify). Note that two
rotations one after the other give another rotation, while two reflections give us a rotation.

Let us now construct some examples in 3D. Just as in 2D, rotations are characterized by orthogonal matrices
with det = +1. For orthogonal matrices, each column vector has length 1, and the dot product of any two
different columns is 0. This gives rise to six constraints (3 pairwise dot product constraints, and 3 length
constraints), so for a 3 dimensional rotation matrix

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (14)

with 9 total parameters, there are really only three free parameters. There are several methods by which
these parameters can be specified, as we will study later. Here are a few example rotation matrices.

• Rotation about z-axis by θ:

R =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (15)

• Rotation about x-axis by θ:

R =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (16)

2.2 Group structure of isometries
Any isometry can be expressed as the combination of an orthogonal transformation followed by a translation
as follows:

ψ(a) = Aa+ t (17)

where A represents the orthogonal matrix and t is the translation vector.

The set of rigid body motions constitutes a group1. In our notation, ψ1 ◦ ψ2, ψ1 composed with ψ2, denotes
that we apply ψ2 first and then ψ1.

1A group (G, ◦) is a set G with a binary operation ◦ that satisfies the following four axioms: Closure: For all a, b in G, the
result of a ◦ b is also in G. Associativity: For all a, b and c in G, (a ◦ b) ◦ c = a ◦ (b ◦ c). Identity element: There exists an element
e in G such that for all a in G, e ◦ a = a ◦ e = a. Inverse element: For each a in G, there exists an element b in G such that
a ◦ b = b ◦ a = e, where e is an identity element.



We will show first that isometries are closed under composition. Consider two rigid body motions, ψ1 and
ψ2:

ψ1(a) = A1a+ t1 ψ2(a) = A2a+ t2. (18)

Then we have

ψ1 ◦ ψ2(a) = A1(A2a+ t2) + t1 (19)

= A1A2a+A1t2 + t1 (20)

= (A1A2)a+ (A1t2 + t1) (21)

= A3a+ t3 (22)

where A3 = A1A2 and t3 = A1t2 + t3. Thus, ψ1 ◦ ψ2 = ψ3 is also a rigid body motion, under the
assumption that the product of two orthogonal matrices is orthogonal (Verify!)

Note that translations and rotations are closed under composition, but reflections are not.

We can verify the remaining axioms for showing that isometries constitute a group

• Identity: A = I, d = 0 .

• Inverse: We need A1A2 = I and t3 = A1t2 + t1 = 0. This means that for ψ1 to be the inverse of
ψ2, A1 = AT

2 and d2 = −A−1
1 t1

• Associativity: left as an exercise for the reader.

3 Parametrizing Rotations in 3D
Recall that rotation matrices have the property that each column vector has length 1 and the dot product of
any 2 different columns is 0. These 6 constraints leave only 3 degrees of freedom. Here are some alternative
notations used to represent orthogonal matrices in 3-D:

• Euler angles which specify rotations about 3 axes

• Axis plus amount of rotation

• Quaternions which generalize complex numbers from 2-D to 3-D. (Note, a complex number can
represent a rotation in 2-D)

We will use the axis and rotation as the preferred representation of an orthogonal matrix: s, θ, where s is the
unit vector of the axis of rotation and θ is the amount of rotation.

Definition 4 A matrix S is skew-symmetric if S = −ST .

Skew symmetric matrices can be used to represent “cross” products or vector products. Recall:a1a2
a3

 ∧

b1b2
b3

 =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1





We define â as:

â
def
=

 0 −a3 a2
a3 0 −a1
−a2 a1 0


Thus, multiplying â by any vector gives:

â

b1b2
b3

 =

−a3b2 + a2b3
a3b1 − a1b3
−a2b1 + a1b2


= a ∧ b

Consider now, the equation of motion of a point q on a rotating body:

q̇(t) = ω ∧ q(t)

where the direction of ω specifies the axis of rotation and ∥ω∥ specifies the angular speed. Rewriting with ω̂

q̇(t) = ω̂q(t)

The solution of this differential equation involves the exponential of a matrix. (In matlab, this is the operator
expm.)

q(t) = eω̂tq(0)

Where,

eω̂t = I+ ω̂t+
(ω̂t)2

2!
+

(ω̂t)3

3!
+ ...

Collecting the odd and even terms in the above equation, we get to Roderigues Formula for a rotation
matrix R.

R = eϕŝ

= I+ sinϕ ŝ+ (1− cosϕ)ŝ2

Here s is a unit vector along ω and ϕ = ∥ω∥t is the total amount of rotation. Given an axis of rotation, s,
and amount of rotation ϕ we can construct ŝ and plug it in.

4 Affine transformations
Thus far we have focused on Euclidean transformations, ψ(a) = Aa+ t, where A is an orthogonal matrix.
If we allow A to be any non-singular matrix (i.e., detA ̸= 0), then we get the set of affine transformations.
Note that the Euclidean transformations are a subset of the affine transformations.

4.1 Degrees of freedom
Let us count the degrees of freedom in the parameters that specify a transformation. For ψ : R2 7→ R2,
Euclidean transformations have 3 free parameters (1 rotation, 2 translation), whereas Affine transformations
have 6 (4 in A and 2 in t). For ψ : R3 7→ R3, Euclidean transformations have 6 free parameters (3 rotation,
3 translation), whereas Affine transformations have 12 (9 in A and 3 in t).



5 Written Exercises
(a) Show that in R2 reflection about the θ = α line followed by reflection about the θ = β is equivalent

to a rotation of 2(β − α).

(b) Verify Roderigues formula by considering the powers of the skew-symmetric matrix associated with
the cross product with a vector.

(c) Write a Python function for computing the orthogonal matrix R corresponding to rotation ϕ about
the axis vector s. Find the eigenvalues and eigenvectors of the orthogonal matrices and study any
relationship to the axis vector. Verify the formula cosϕ = 1

2{trace(R) − 1}. Show some points
before and after the rotation has been applied.

(d) Write a Python function for the converse of that in the previous problem i.e. given an orthogonal
matrix R, compute the axis of rotation s and ϕ ). Hint: Show that R−RT = (2 sinϕ)ŝ

(e) Use least squares to find the best estimate of the Euclidean planar transformation (translation + rota-
tion ) E that minimizes the error

∑4
j=1 | Euj − vj |2. Here

uj = [(−3, 0), (1, 1), (1, 0), (1,−1)]

and
vj = [(0, 3), (1, 0), (0, 0), (−1, 0)]

(f) Show that the vanishing points of lines on a plane lie on the vanishing line of the plane.



6 Coding Exercise: AutoGrad
Fill out and turn in the following colab notebook(TODO:1,2,3,4,5) with the cell outputs displayed. You
may use Andrej Karpathy’s micrograd tutorial for reference. Additionally, answer the questions below.

(a) Are we strictly required to use our atomic operations when defining new functions, e.g., sigmoid?
Under what conditions can we define new operations?

(b) When performing backpropagation on a Value, why do we accumulate the gradient as opposed to
directly assigning the gradient?

7 Submission
Submit a single PDF containing written solutions, as well as the notebook (also as a PDF) at the very end.
Submit via Gradescope.

https://colab.research.google.com/drive/1buZlRz8npawldm0fC4UkRtDjLDXYikwB?usp=sharing
https://youtu.be/VMj-3S1tku0
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